Abstract
Covid-19 disease is a respiratory illness caused by SARS-Cov-2 and poses a serious public health risk. It usually spread from person-to-person. The fractional- order of covid-19 was determined and basic reproduction number using the next generation matrix was calculated. The stability of disease-free equilibrium and endemic equilibrium of the model were investigated. Also, sensitivity analysis of the reproduction number with respect to the model parameters were carried out. It was observed that in the absence of infected persons, disease free equilibrium is achievable and is asymptotically stable.
Numerical simulations were presented graphically. The results of the model analysis indicated that $R_{0}$ $\mathrm{<}$ 1 is adequate enough to reducing the spread of disease and disease persevere in the population when $R_{0}$ $\mathrm{>}$ 1 The numerical results showed that effective vaccination of the population helps in curtailing the spread of the viral disease.
In order to know whether the disease may die out or persist, basic reproduction number, $R_{0}$ was obtained using Next Generation Matrix Method. It was observed that the value of $R_{0}$ is high when the depletion of awareness programme is high while the value of $R_{o}$ is very low when the rate of implementation of awareness programme is high. So, neglecting the implementation of awareness program can have serious effect on the population. The model shows the implementation of awareness program is the key eradication to the pandemic.