• Register
  • Login

Computational Mathematics and Computer Modeling with Applications (CMCMA)

  1. Home
  2. Solving parameterized generalized‎ ‎inverse eigenvalue problems via Golub-Kahan bidiagonalization

Current Issue

By Issue

By Author

By Subject

Author Index

Keyword Index

About Journal

Aims and Scope

Publication Ethics

Indexing and Abstracting

Related Links

Peer Review Process

Journal Metrics

Solving parameterized generalized‎ ‎inverse eigenvalue problems via Golub-Kahan bidiagonalization

    Authors

    • Zeynab Dalvand 1
    • Mohammad Ebrahim Dastyar 2

    1 Department of Applied Mathematics, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran

    2 Department of Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran

,

Document Type : Regular paper

10.52547/CMCMA.1.1.21
  • Article Information
  • Download
  • How to cite
  • Statistics
  • Share

Abstract

In this study, we present two two-step methods to solve parameterized generalized inverse eigenvalue problems that appear in diverse areas of computation and engineering applications.  At the first step,  we  transfer the inverse eigenvalue problem into a  system of nonlinear equations by using of the Golub-Kahan bidiagonalization. At the second step, we use Newton's and Quasi-Newton's  methods for the numerical solution of system of nonlinear equations. Finally, we present some numerical examples which show that our methods are applicable for solving the parameterized inverse eigenvalue problems.

Keywords

  • Parameterized generalized inverse eigenvalue problem
  • Golub-Kahan bidiagonalization
  • Nonlinear equations
  • Newton's method
  • XML
  • PDF 136.15 K
  • RIS
  • EndNote
  • Mendeley
  • BibTeX
  • APA
  • MLA
  • HARVARD
  • CHICAGO
  • VANCOUVER
    • Article View: 305
    • PDF Download: 378
Computational Mathematics and Computer Modeling with Applications (CMCMA)
Volume 1, Issue 1 - Serial Number 1
June 2022
Pages 21-36
Files
  • XML
  • PDF 136.15 K
History
  • Receive Date: 13 December 2021
  • Revise Date: 29 December 2021
  • Accept Date: 31 December 2021
Share
How to cite
  • RIS
  • EndNote
  • Mendeley
  • BibTeX
  • APA
  • MLA
  • HARVARD
  • CHICAGO
  • VANCOUVER
Statistics
  • Article View: 305
  • PDF Download: 378

APA

Dalvand, Z. and Dastyar, M. E. (2022). Solving parameterized generalized‎ ‎inverse eigenvalue problems via Golub-Kahan bidiagonalization. Computational Mathematics and Computer Modeling with Applications (CMCMA), 1(1), 21-36. doi: 10.52547/CMCMA.1.1.21

MLA

Dalvand, Z. , and Dastyar, M. E. . "Solving parameterized generalized‎ ‎inverse eigenvalue problems via Golub-Kahan bidiagonalization", Computational Mathematics and Computer Modeling with Applications (CMCMA), 1, 1, 2022, 21-36. doi: 10.52547/CMCMA.1.1.21

HARVARD

Dalvand, Z., Dastyar, M. E. (2022). 'Solving parameterized generalized‎ ‎inverse eigenvalue problems via Golub-Kahan bidiagonalization', Computational Mathematics and Computer Modeling with Applications (CMCMA), 1(1), pp. 21-36. doi: 10.52547/CMCMA.1.1.21

CHICAGO

Z. Dalvand and M. E. Dastyar, "Solving parameterized generalized‎ ‎inverse eigenvalue problems via Golub-Kahan bidiagonalization," Computational Mathematics and Computer Modeling with Applications (CMCMA), 1 1 (2022): 21-36, doi: 10.52547/CMCMA.1.1.21

VANCOUVER

Dalvand, Z., Dastyar, M. E. Solving parameterized generalized‎ ‎inverse eigenvalue problems via Golub-Kahan bidiagonalization. Computational Mathematics and Computer Modeling with Applications (CMCMA), 2022; 1(1): 21-36. doi: 10.52547/CMCMA.1.1.21

  • Home
  • About Journal
  • Editorial Board
  • Submit Manuscript
  • Contact Us
  • Sitemap

News

Newsletter Subscription

Subscribe to the journal newsletter and receive the latest news and updates

© Journal management system. designed by sinaweb