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In this study, we present two two-step methods to solve parameterized generalized inverse eigenvalue problems that appear

in diverse areas of computation and engineering applications. At the first step, we transfer the inverse eigenvalue problem

into a system of nonlinear equations by using of the Golub-Kahan bidiagonalization. At the second step, we use Newton’s

and Quasi-Newton’s methods for the numerical solution of system of nonlinear equations. Finally, we present some numerical

examples which show that our methods are applicable for solving the parameterized inverse eigenvalue problems. Copyright
c⃝ 2022 Shahid Beheshti University.
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1. Introduction

In this paper, we need some notations which are described in the following sentences. We use the symbol Rn×n to denote the
set of all real n × n matrices. We apply In to show the n × n identity matrix, ej to represent the j-th column vector of In and
I j = (e1, e2, . . . , ej) ∈ Rn×j . The symbols AT , det(A) and κ(A) denote the transpose, the determinant and the condition number
of a matrix A, respectively. We show the set of all n × n upper-bidiagonal matrices by using Un. Let ∥.∥2 denotes the Euclidean
norm for vectors and induced norms for matrices.

Let A(c) and B(c) be real n × n matrix-valued functions depending on c = (c1, c2..., cn)T ∈ Rn and F represents the scalar field
of real R. If we have a set of scalars Ω ∈ F, then the parameterized inverse eigenvalue problem (PIEP) is defined as follows:

Problem 1 Assume that a set of real numbers {λ1, λ2, ..., λn} ⊆ Ω and n × n the matrices Ai ∈ Rn×n(i = 0, 1, 2, . . . , n) are
given. Find a vector c ∈ Rn such that the matrix A(c) = A0 +

∑i=n
i=1 ciAi has the given eigenvalues λ1, λ2, ..., λn.

In this paper we consider the following extended form of the PIEP, which is called the parameterized generalized inverse eigenvalue

problem (PGIEP).

Problem 2 Assume that a set of distinct real numbers {λ1, λ2, ..., λn} and the matrices Ai , Bi ∈ Rn×n(i = 0, 1, 2, . . . , n) are
given. Find vector c ∈ Rn such that the generalized eigenvalue problem A(c)x = λB(c)x has the prescribed eigenvalues
λ1, λ2, ..., λn, where matrices A(c) and B(c) are affine in c as follow:

A(c) = A0 +

i=n∑
i=1

ciAi , B(c) = B0 +

i=n∑
i=1

ciBi , (1)
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A special type of Problems 2 is the algebraic inverse eigenvalue problem [49, 32, 43] which A0, A2, ..., An are real symmetric

matrices, B0 = I and Bi = 0 for i = 1, ..., n.

The additive inverse eigenvalue problems [14, 22] are included in the formulation of Problem 2 with the following matrices

A0 = A, Ai = eiei
T , i = 1, 2, ..., n,

B0 = I, Bi = 0, i = 1, 2, ..., n,

in which A is a constant matrix. In [39], Yuan et al. considered a parameterized inverse eigenvalue problem which Bi for

i = 1, ..., n, are bisymmetric matrices. Other cases of the PGIEP is presented by Du et al. [21].

PGIEP is one of the most frequent inverse eigenvalue problems that arises in variant areas of engineering applications, among

which we can refer to vibrating string [42], structure design and applied mechanics [33, 6]. PGIEP also play an important role in

the study of the nuclear spectroscopy and molecular spectroscopy [13]. In addition, these problems have numerous applications

in numerical computing, e.g., inverse Sturm-Liouville problems [5, 44], the factor analysis [35] and the educational testing

problems[3]. The existence of these problems in the design of control systems is given in reference [12].

In the recent decades, many researchers have focused their attention on specific categories of parameterized inverse eigenvalue

problems [30, 14, 32]. There are a lot of articles on numerical methods and existence theory for different categories of

parameterized inverse eigenvalue problems [47, 28, 26, 27, 18, 20, 19]. Using Brouwers fixed-point theorem, sufficient conditions

for the solvability of Problem 1 and 2 are presented in [9], and Alexander reported sufficient conditions by employing topological

degree for the solvability of this problem [4]. Sufficient conditions for the positive solution of the algebraic inverse eigenvalue

problem are provided in [12]. In [46], the sufficient conditions for the solvability of algebraic inverse eigenvalue problems are

presented. In [47], Xu investigated the necessary conditions for the solvability of algebraic inverse eigenvalue problems. In [29], Ji

presented the sufficient conditions for guaranteeing the existence of a solution of the parameterized inverse eigenvalue problem

and then Dai et al. expanded the conditions for the PGIEP [16]. Also, a number of sufficient conditions for the existence of the

solution of the symmetric nonnegative inverse eigenvalue problem have been collected and compared in [34].More resources in

this area can be seen in [38, 41, 45, 31].

Moreover, there are more numerical methods to find the solution for the parameterized generalized inverse eigenvalue problems

[36, 17, 40]. One of the developed ideas is the use of iterative methods for solving the parameterized inverse eigenvalue problem.

Most existing iterative methods for solving these problems, lead to a system of nonlinear equations. In some of these methods by

assuming that the eigenvalues of the generalized eigenvalue problem A(c)x = λB(c)x are shown by λ1(c) ≤ λ2(c) ≤ ... ≤ λn(c)
and the eigenvalues given in the problem are denoted λ1 < λ2 < ... < λn, we need to solve F (c) = 0, where

F (c) =


λ1(c)− λ1
λ2(c)− λ2

...

λn(c)− λn

 = 0, (2)

or

F (c) =


det(A(c)− λ1B(c))
det(A(c)− λ2B(c))

...

det(A(c)− λnB(c))

 = 0. (3)

The Newton’s method is proposed for solving the system of nonlinear equations (2) by Dai and Lancaster [17], by expanding

the ideas which were developed by Friedland in [24]. This method requires the computation of all eigenvalues and eigenvectors

of the problem A(c)x = λB(c)x in each iteration of the Newton’s method. Also in [40], Shu and Li introduced a homotopy

method for solving (3). Different Newton-like methods are give for solving (2) in [7], such as the Cayley transform method and

the inexact Cayley transform method. Since, the Cayley transform takes a lot arithmetic operations to produce an orthogonal

matrix in each iteration, in [1], an algorithm based on matrix equations was presented for inverse eigenvalue problems, which it

can refine orthogonality without the Cayley transform and reduces the operations of the Cayley transform in each iteration. In

addition, Aishima improved this algorithm by the using of an optimization problem for the eigenvectors associated with multiple

eigenvalues [2]. In 1996, Xu [48] provided a method based on the properties of the smallest singular value of matrices.

Most of the iterative methods, which provided to solve inverse eigenvalue problems are computationally complex, because they

need to solve a eigenvalue problem in each iteration. In this paper, two numerical algorithms based on the bidiagonalization are

proposed to avoid solving a eigenvalue problem in each iteration and decrease some computational complexity. The remainder

of this paper is organized as follows. In Section 2, first a description of the bidiagonal factorization for a matrix-valued function

is given and then two iterative methods are constructed for solving Problem 2. In Section 3, the numerical examples illustrate

the numerical behavior of the proposed methods. We end the paper by a brief concluding in Section 4.

2. Main Results

In this section, we offer two iterative algorithms based on the Golub-Kahan bidiagonalization for solving Problem 2.
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2.1. Bidiagonalization

In this subsection, we briefly recall the bidiagonal factorization. Bidiagonal factorization is a two-sided orthogonal factorization

[25]. Let A ∈ Rn×n, the main idea of the bidiagonal factorization of the matrix A is computing the orthogonal matrices UB
(n − by − n) and VB (n − by − n) such that

UTBAVB = B, (4)

in which B is upper bidiagonal matrix in the following form

B =


α1 β1 0 . . . 0

0 α2 β2 0
...
. . .

. . .
. . .

...

0 . . . αn−1 βn−1
0 . . . αn

 ,
and UB = U1 . . . Un, VB = V1 . . . Vn−2, where each of Vi , Ui could be Householder or Givens matrices. Using these matrices, the

matrix A is transformed in the following way:
× × × ×
× × × ×
× × × ×
× × × ×

U1−→

× × × ×
0 × × ×
0 × × ×
0 × × ×

 V1−→

× × 0 0

0 × × ×
0 × × ×
0 × × ×

U2−→

× × 0 0

0 × × ×
0 0 × ×
0 0 × ×

 V2−→

× × 0 0

0 × × 0

0 0 × ×
0 0 × ×

U3−→

× × 0 0

0 × × 0

0 0 × ×
0 0 0 ×


In general, Ui creates zeros elements in i-th column and Vi creates zeros elements in i-th row. Since matrices UB and VB are

orthogonal matrices, Eq.(4) leads to

|det(A)| = |det(B)|.

2.2. Bidiagonal factorization for a matrix-valued function

Since matrices A(c) and B(c) are matrix-valued functions depending on several parameters, we can not directly use the bidiagonal

factorization. So, in this subsection, we present a smooth bidiagonal factorization for a differentiable matrix-valued function of

multiple parameters.

Let Q(c) = (qkl(c)) ∈ Cn×n be differentiable matrix defined on F , which F is a connected open subset of Cn such that

Q(c) = Q(c (0)) +

n∑
i=1

δQ(c (0))

δci
(ci − c (0)i ) + o(∥c − c

(0)∥2), (5)

where
δQ(c (0))

δci
=
δqkl(c

(0))

δci
|c=c(0) ∈ C

n×n. (6)

In the following theorem, we offer an existence result for bidiagonal factorization of the matrix-valued function Q(c).

Theorem 1 Let Q(c) ∈ Rn×n be a differentiable matrix defined on a connected open subset F ⊆ Rn such that at a given point
c (0), rank Q(c (0)) ≥ n − 1. Assume that there exist two orthogonal matrices UT and VT such that UTTQ(c (0))VT has a bidiagonal
factorization

UTTQ(c
(0))VT = T0(c

(0)),

where

T0 =

(
T11 T12
0 tnn

)
.

Then there exists a neighborhood of c (0) as N(c (0)) ⊆ F, such that for all c ∈ N(c (0)) the matrix-valued function Q(c) has a
bidiagonal factorization as:

UTTcQ(c)VTc = T (c), f or c ∈ N(c (0)),
where

T (c) =

(
T11(c) T12(c)

0 tnn(c)

)
.

In addition it holds that

tnn(c) = tnn(c
(0)) + eTn U

T
T

n∑
i=1

δQ(c (0))

δci
VT (en − In−1T−111 T12)(ci − c (0)i ) + o(∥c − c

(0)∥2). (7)
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Proof. By using Eq. (5) and

Qd(c) :=

n∑
i=1

δQ(c (0))

δci
(ci − c (0)i ) + o(∥c − c

(0)∥2),

we obtain

Q(c) = Q(c (0)) +Qd(c),

and

UTTQ(c)VT = U
T
TQ(c

(0))VT + U
T
TQd(c)VT := T0 + Q̃(c),

where

Q̃(c) = UTT

n∑
i=1

δQ(c (0))

δci
VT (ci − c (0)i ) + o(∥c − c

(0)∥2),

T0 =

(
T11 T12
0 tnn

)
.

By considering

Q̃(c) =

(
Q̃11(c) Q̃12(c)

Q̃21(c) q̃nn(c)

)
,

where T11 ∈ Un−1 and Q̃11(c) ∈ C(n−1)×(n−1), we define the matrix-valued function U1(c) as

U1(c) :=

(
I −Q̃21(c)(T11 + Q̃11(c))−1
0 1

)
.

Simple computations show that

UT1 U
T
TQ(c)V

T
T =

(
T̃11(c) T̃12(c)

0 tnn(c)

)
,

where

T̃11(c) = T11(c
(0)) + Q̃11(c), T̃12(c) = T12(c

(0)) + Q̃12(c)

and

tnn = tnn(c
(0)) + q̃nn(c)− Q̃21(c)(T11(c (0)) + Q̃11(c))−1(T12(c (0)) + Q̃12(c))

= tnn(c
(0)) + eTn U

T
T

n∑
i=1

δQ(c (0))

δci
VT (en − In−1T−111 T12)(ci − c (0)i ) + o(∥c − c

(0)∥2). (8)

Now the proof is finished. �

2.3. Two new algorithms to solve Problem 2

In this subsection, we present two algorithms based on the bidiagonalization for solving special categories of the parameterized

generalized inverse eigenvalue problems.

At first, we introduce a system of nonlinear equations which is equivalent to the PGIEP. For this purpose, we compute the

bidiagonal factorization of A(c)− λiB(c)(i = 1, . . . , n) by using Householder matrices as follows:

UTi (c)(A(c)− λiB(c))Vi(c) = Ti(c), i = 1, . . . , n, (9)

where UTi (c) and Vi(c) are orthogonal matrices, and

Ti =

(
T
(i)
11 T

(i)
12

0 t
(i)
nn

)
.

The determinant of Ti(c) is equal to the determinant of the left hand side matrix in Eq.(9). Afterwards, if

t(i)nn (c) = 0, i = 1, 2, . . . , n,

then the generalized eigenvalue problem A(c)x = λB(c)x has the eigenvalues λ1, λ2, . . . , λn. So, for solving the parameterized

inverse eigenvalue problem, we create the following system of nonlinear equations:

F (c) =


t
(1)
nn (c)

t
(2)
nn (c)

. . .

t
(n)
nn (c)

 = 0. (10)
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Now we use the Newton method to solve the system of the nonlinear equations (10). Suppose flow iterate c (k) be sufficiently

close to a solution of the nonlinear system (10), then one step of Newton method for the solution of (10) is as follow:

JF (c
(k))(c (k+1) − c (k)) = −F (c (k)), (11)

where JF (c
(k)) is the Jacobian matrix of the nonlinear function (10) by following form

JF (c
(k)) =


∂t
(1)
nn (c)

∂c1
. . .

∂t
(1)
nn (c)

∂cn

∂t
(2)
nn (c)

∂c1
. . .

∂t
(2)
nn (c)

∂c1

. . . . . .
∂t
(n)
nn (c)

∂c1
. . .

∂t
(n)
nn (c)

∂c1

 , (12)

By replacing (A(c)− λiB(c)) instead of Q(c) in Eq. (8), it follows from Theorem 1 that we can conclude that t(i)nn is calculated
as

t(i)nn (c) = t
(i)
nn (c

(0)) + eTn (U
i)T (

n∑
j=1

(Aj − λiBj))(V i)(eTn − In−1T i11
−1
T i12)(cj − c (0)j ) (13)

+ o(∥c − c (0)∥2), (14)

where (Aj − λiBj) = ∂(A(c(k))−λiB(c(k)))
∂cj

. On the other hand, using Taylor series, we can get

t(i)nn (c) = t
(i)
nn (c

(k)) +

n∑
j=1

∂t
(i)
nn (c

(k))

∂cj
(cj − c (k)j ) +O(∥c − c

(0)∥22) (15)

Using Eq. (13) and (15), and similar to [16], we obtain
∂t
(i)
nn (c

(k))

∂cj
as

∂t
(i)
nn (c

(k))

∂cj
= eTn U

i T (c (k))(Aj − λiBj)V i(c (k))(eTn − In−1T i11
−1
T i12). (16)

From the above discussion, a new method for solving the Problem 2 can be resumed in the following algorithm.

Algorithm 1 (The algorithm for finding a solution of the Problem 2)

Choose an initial guess c (0) and, for k = 0, 1, 2, . . . until ∥F (c (k))∥2 is small enough;

1. Compute A(c (k))− λiB(c (k))(i = 1, . . . , n) and Aj − λiBj(i = 1, . . . , n, j = 1, . . . , n, ) ;

2. Compute bidiagonal factorization of A(c (k))− λiB(c (k)):

U(i)
T
(c (k))(A(c (k))− λiB(c (k)))V (i)(c (k)) = Ti(c (k)), i = 1, . . . , n;

3. Compute F (c (k))and JF (c
(k)) using (10) and (16);

4. Find c (k+1) by solving the Newton equation (11);

The computational cost of each step of Algorithm 1 is as follows: Step 1 is calculated using n4 + 3n3 flops, the bidiagonal

factorization of A(c (k))− λiB(c (k)) needs 43n
3 flops (see, e.g.,[25]), so that Step 2 needs 4

3
n4 flops; Step 3 requires approximately

n4 flops; and Step 4 requires 2
3
n3 flops. In summary, the total cost of Algorithm 1 is about 1

3
(10n4 + 11n3) flops. Note that the

algorithms proposed in [16] and [17] require approximately 1
3
(8n4 + 11n3) and 1

3
(2n4 + 35n3) flops per iteration, respectively.

However, some of our numerical tests showed that Algorithm 1 took generally less iterations than algorithms proposed in [16].

Since in Algorithm 1 the Jacobian matrix JF (c) and its inverse should be calculated at each iteration, we now use the

Quasi-Newton method to avoids the direct computation of the Jacobian matrix. Burden and Faires developed the Quasi-Newton

methods for approximating the Jacobian matrix at each iteration [11]. One of Quasi-Newton method types is Broyden’s method

[10]. Broyden’s iterative procedure is defined as

c (k+1) = c (k) −H−1k F (c
(k)) (17)

where the matrix Hk is defined as

Hk = Hk−1 +
yk −Hk−1sk
∥sk∥22

sTk , (18)
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in which yk = F (ck−1)− F (ck−1), si = c (k) − c (k−1). Using the Sherman-Morrison formula [37], the matrix H−1k can be calculated
easily as

H−1k = (Hk−1 +
yk −Hk−1sk
∥sk∥22

)−1

= H−1k−1 −
H−1k−1(Hk−1 +

yk−Hk−1stk
∥sk∥22

sk)H
−1
k−1

1 + s tkH
−1
k−1(

yk−Hk−1sk
∥sk∥22

)

= H−1k−1 −
(H−1k−1yk − sk)s

t
kH
−1
k−1

∥sk∥22 + s tkH
−1
k−1yk − ∥sk∥22

.

Therefore, an approximation of the inverse matrix Hk is calculated in each iteration using

H−1k = H
−1
k−1 +

(sk −H−1k−1yk)s
t
kH
−1
k−1

s tkH
−1
k−1yk

. (19)

Now, by using the Broyden’s method we propose a new algorithm to solve Problem 2.

Algorithm 2 (The algorithm for finding a solution of the Problem 2).

Choose an initial guess c (0) and, for k = 0, 1, 2, . . . until ∥F (c (k))∥2 is small enough;

1. Compute A(c (k))− λiB(c (k))(i = 1, . . . , n) and Aj − λiBj(i = 1, . . . , n, j = 1, . . . , n, ) ;

2. Compute bidiagonal factorization of A(c (k))− λiB(c (k)):

U(i)
T
(c (k))(A(c (k))− λiB(c (k)))V (i)(c (k)) = Ti(c (k)), i = 1, . . . , n;

3. Compute F (c (k)) using (10)

4. Compute

H−1k =


H−1k−1 +

(sk−H−1k−1yk )s
t
k
H−1
k−1

st
k
H−1
k−1yk

, for k = 1, 2, ....,

J−1F (c
(0)), for k = 0.

(20)

7. Compute c (k+1) using Broyden’s iterative (17).

3. COMPUTED EXAMPLES

We have tested both algorithms on several kinds of parameterized inverse eigenvalue problems. In this section, we present

five examples of our experiments with Algorithms 1 and 2 to illustrate the efficiency of these algorithms. Also, we provide a

comparison between Algorithms 1 and 2 and the algorithms contained in [16, 17, 15, 48]. The iterations were stopped when

the norm ∥f (c (k))∥2 was less than 10−9. All computations were performed using MATLAB (version 8.5) installed on a computer
with Intel i7 CPU 2100 MHz and 8 GB RAM.

Example 1 [16] In this example, we consider a PGIEP with n = 2, λ1 = −1, λ2 = 3,

A1 =

(
1.25 1

1 1.25

)
, A2 =

(
1.9 0.7

0.7 1.7

)
, A3 =

(
0.575 −0.1
−0.775 4

)
,

and

B0 =

(
−0.25 0

0 0.75

)
, B1 =

(
0.3 0.3

0.3 0.6

)
, B2 =

(
−0.475 0

−0.225 0

)
.

By applying Algorithm 1 and Algorithm 4.1 in [16], with the different initial vectors c (0) = (−0.5, 0.5)T , c (0) = (−5, 2)T and
c (0) = (−1.5, 0.5)T , we obtain the solutions c∗ = (−0.4530, 0.3612)T , c∗ = (−5.1223, 1.8123)T and c∗ = (−2.3724, 0.6855)T
of the PGIEP, respectively. It is known that there can be as many as n! different solutions [23] and, in practice, one may wish to

search among these for a solution which is optimal in some sense. Figure 1 shows the numerical results obtained from Algorithm

1 with the different initial vectors. The results are illustrated in Table 1.
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1 2 3 4

k(Iteration Number )

10-10

10-5

100

105

lo
g

10
||f

||
2

(a)

1 2 3 4

k(Iteration Number )

10-15

10-10

10-5

100

105

lo
g

10
||f

||
2

(b)

1 2 3 4 5

k(Iteration Number )

10-15

10-10

10-5

100

lo
g

10
||f

||
2

(c)

Figure 1. The results obtained for Example 1, (a): initial vector c(0) = (−0.5, 0.5)T , (b): initial vector c(0) = (−5, 2)T and (c): initial vector c(0) = (−1.5, 0.5)T .

Table 1. Numerical results for Example 1.

Ite Algorithm 1 Algorithm 4.1 in [16]

c(0) k ∥c∗ − c(k)∥ ∥f (c(k))∥ ∥c∗ − c(k)∥ ∥f (c(k))∥
0 0.146E+00 0.611E+00 0.146E+00 0.611E+00

(−0.5, 0.5)T 1 0.142E-01 0.109E-01 0.494E-02 0.109E-01

2 0.102E-05 0.750E-05 0.175E-05 0.750E-05

3 0.201E-13 0.209E-11 0.474E-12 0.209E-11

0 0.224+00 0.226E+01 0.224E+00 0.121E+01

(−5, 2)T 1 0.403E-01 0.843E-01 0.489E-01 0.637E-02

2 0.253E-04 0.145E-03 0.231E-03 0.292E-04

3 0.133E-09 0.302E-09 0.539E-08 0.680E-09

0 0.891E+00 0.730+00 0.891E+00 0.801E+00

(−1.5, 0.5)T 1 0.237E-01 0.109E-01 0.264E+00 0.159E+00

2 0.221E-03 0.104E-03 0.682E-01 0.329E-01

3 0.192E-07 0.905E-08 0.512E-02 0.228E-02

4 0.144E-14 0.115E-14 0.297E-04 0.131E-04

5 0.101E-08 0.448E-09

Example 2 [17] As the second example, we have a parameterized inverse eigenvalue problem in which n = 5,

A0 = diag(9, 11, 10, 8, 14), B0 = diag(11, 13, 15, 11, 10), A1 = B1,

A2 =


0 2 0 0 0

2 0 1 0 0

0 1 0 1 0

0 0 1 0 1

0 0 0 1 0

 , B2 =


0 1 0 0 0

1 0 1 0 0

0 1 0 −1 0

0 0 −1 0 −1
0 0 0 −1 0

 ,

A3 =


0 0 3 0 0

0 0 0 2 0

3 0 0 0 −1
0 2 0 0 0

0 0 −1 0 0

 , B3 =


0 0 −1 0 0

0 0 0 −1 0

−1 0 0 0 1

0 −1 0 0 0

0 0 1 0 0

 ,

A4 =


0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

 , B4 =


0 0 0 2 0

0 0 0 0 1

0 0 0 0 0

2 0 0 0 0

0 1 0 0 0

 ,
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Table 2. Numerical results for Example 2.

Ite Algorithm 1 Algorithm 4.1 in [16] Algorithm 2.1 in [17]

k ∥c∗ − c(k)∥ ∥f (c(k))∥ Kκ ∥c∗ − c(k)∥ ∥f (c(k))∥ Kκ ∥c∗ − c(k)∥ ∥λ(c(k))− λ∗∥
0 0.335E+00 0.817E+00 0.300E+02 0.335E+00 0.146E+01 0.300E+02 0.335E+00 0.034E-03

1 0.101E-01 0.149E-01 0.019E+04 0.623E-01 0.248E+00 0.154E+03 0.744E-01 0.997E-04

(a) 2 0.432E-04 0.447E-04 0.289E+05 0.520E-02 0.240E-01 0.204 E+04 0.450E-04 0.105E-05

3 0.369E-09 0.452E-09 0.508E+09 0.247E-04 0.129E-04 0.261E+09 0.278E-08 0.497E-09

4 0.290E-15 0.939E-15 0.080E+16 0.139E-08 0.359E-09 0.796E+12 0.171E-13 0.221E-13

5 0.100E-13 0.327E-13 0.008E+16

0 0.335E+00 0.246E+01 0.221E+02 0.335E+00 0.195E+01 0.221E+02 0.335E+00 0.485E-01

1 0.393E+00 0.334E+00 0.202E+03 0.121E+01 0.378E+00 0.154E+03 0.676E-01 0.117E-02

(b) 2 0.184E-01 0.195E+01 0.001E+07 0.191E+00 0. 846E-01 0.204E+04 0.694E-03 0.126E-04

3 0.370E-04 0.684E-04 0.037E+09 0.365E-02 0.173E-02 0.261E+09 0.568E-07 0.108E-08

4 0.263E-09 0. 389E-09 0.700E+12 0.258E-05 0.738E-06 0.008E+12 0.152E-12 0.710E-12

5 0.179E-13 0.133E-13 0.244E+16 0.876E-12 0.279E-12 0.008E+16

0 0.741E+00 0.158E+00 0.973E+01 - - - 0.741E+00 0.158E+00

1 0.115E+00 0.361E-02 0.079E+03 0.160E+01 0.192E-01

(c) 2 0.220E-02 0.363E-04 0.051E +04 0.115E+00 0.361E-02

3 0.525E-06 0.105E-07 0.051E+09 0.220E-02 0.363E-04

4 0.174E-13 0.730E-15 0.345E+16 0.525E-06 0.105E-07

5 0.108E-12 0.845E-15

A5 = B5 =


0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

 ,

A(c) = A0 +

n∑
i=1

ciAi , B(c) = B0 +

n∑
i=1

ciBi .

The eigenvalues are given by

λ∗ = (0.43278721102, 0.66366274839, 0.94385900467, 1.10928454002, 1.49235323254)T .

Algorithm 1, considering that the starting vectors

c (0) =


(1.25, 1.15, 1.05, 0.9, 0.85)T , Case(a),

(1.15, 1.15, 1.05, .075, 1.05)T , Case(b),

(1.1, 1.2, 1.3, 1.4, 1.5)T , Case(c),

converges to the solution c (∗) = (1, 1, 1, 1, 1)T . The numerical results for Algorithm 1, Algorithm 4.1 in [16] and Algorithm

2.1 in [17] are displayed in Table 2, where Kκ = min1≤i≤n κ(A(c
(k))− λiB(c (k))), and “Ite.” represents the iteration number,

and “-” denotes the corresponding algorithm fails to converge, respectively. As recent research has shown that the bidiagonal

factorization works best for ill-conditioned matrix [8], our implementation showed that Algorithm 1 performs better in these

cases. Also, it is considerable that in [17], the system of nonlinear equations λ(c)− λ = 0 is solved and all eigenvalues and
eigenvectors are calculated in each step of the algorithm.

Example 3 In this example, we study a PGIEP with n = 5 and

λ1 = δ, λ2 = 1− δ, λ3 = 2, λ4 = 3, λ5 = 4,
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where δ is a constant. Let δ = 0.454 and

A0 =


30 8.4 −0.4 0 0

5.64 33.56 7.28 −0.16 0

−0.09 7.61 13.75 2.72 −0.048
0 −0.12 3.85 4.89 0.624

0 0 −0.03 0.9625 2.154

 ,

B0 =


13.007181 3.997188 0 0 0

2.498594 15.007181 3.997636 0 0

0 3.997636 5.007181 1.799363 0

0 0 2.498938 0.507181 0.600012

0 0 0 0.900024 −0.892819

 ,

A1 =


15 5 0 0 0

2.64 0.88 0 0 0

0.09 0.03 0 0 0

0 0 0 0 0

−0.5015 −0.005 0 0 0

 , B1 = I,

A2 =


0 0 0 0 0

0 16 4 0 0

0 3.64 0.91 0 0

0 0.04 0.01 0 0

0 0 0 0 0

 , B2 =


0 1 0 0 0

0.5 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 ,

A3 =


0 0 0.1 0.025 0

0 0 0.02 0.05 0

0 0 6 1.5 0

0 0 1.88 0.47 0

0 0 0.01 0.0025 0

 , B3 =


0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

 ,

A4 =


0 0 0 −0.1 −0.02
0 0 0 0.02 0.004

0 0 0 0.01 0.002

0 0 0 2 0.4

0 0 0 0.48 0.094

 , B4 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0.3 0

0 0 0.5 0 0

0 0 0 0 0

 ,

A5 =


0 0 0 0 0.15

0 0 0 0 −0.05
0 0 0 0 0.01

0 0 0 0 0.01

0 0 0 0 1

 , B5 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0.1

0 0 0 0.2 0

 .

Algorithm 1, with the starting vector c (0) = (−4.5,−1,−2,−6,−12)T , converges to a solution

c (∗) = (−4.6114,−1.0023,−2.0008,−6.2871,−11.7904)T .

The numerical results are displayed in Table 3. Moreover, the numerical results by Algorithm 1 and Algorithm 4.1 described in

[16] are observed in Figure 2.

Comput. Math. Comput. Model. Appl. 2022, Vol. 1, Iss. 1, pp. 21–36 Copyright c⃝ 2022 Shahid Beheshti University. 29



Computational Mathematics and Computer Modeling with Applications Z. Dalvand and M.E. Dastyar

0 1 2 3 4 5 6

k(Iteration Number)

10-15

10-10

10-5

100

105

||f
||

2

Algorithm 1 in this work

Algorithm  4.1 in [26]

Figure 2. The results obtained for Example 3.

Table 3. Numerical results for Example 3.

Iteration Algorithm 1 Algorithm 4.1 in [16] Algorithm 3.1 in [15]

k ∥c(k+1) − c(k)∥ ∥c∗ − c(k)∥ ∥f (c(k))∥ ∥c∗ − c(k)∥ ∥f (c(k))∥ ∥c∗ − c(k)∥ ∥f (c(k))∥
0 0.142E+00 0.372E+00 0.256E+00 0.37E+00 0.46E+00 0.37E+00 0.45E+00

1 0.282E+00 0.195E+00 0.416E-01 0.51E+00 0.93E-01 0.45E+00 0.92E-01

2 0.771E-01 0.878E-01 0.280E-03 0.18E+00 0.27E-01 0.16E+00 0.23E-01

3 0.117E-01 0.117E-01 0.189E-05 0.11E-01 0.13E-01 0.92E-02 0.11E-01

4 0.821E-05 0.822E-04 0.169E-07 0.97E-03 0.69E-03 0.67E-03 0.46E-03

5 0.803E-07 0.803E-07 0.104E-11 0.16E-05 0.12E-05 0.70E-06 0.53E-06

6 0.219E-13 0.219E-13 0.513E-13 0.33E-10 0.39E-11 0.40E-13 0.76E-12

Example 4 Consider n = 3, λ = {1, 2, 3} and

A0 =

0.66 −0.42 −0.34
2.94 0.33 4.09

0.1 0.48 2.96

 , B0 = I,

A1 =

 1 0.1 0.02

0.1 0 0.01

0.02 0.03 1

 , B1 = 0,

A2 =

 0 0.01 0

0 1 0

0.5 0.01 0

 , B2 = 0,

A3 =

0 0 0.01

0 1 0.01

0 0.6 1

 , B3 = 0.

On the assumption that the starting vector is c (0) = (0.8, 2.2,−1.8)T , Algorithm 2 converges to a solution

c (∗) = (1.0757, 4.1263,−2.1138)T ,

and in [47] by considering the starting vector c (0) = (0.8,−0.5,−1.8)T , Algorithm 2.1 converges the same solution. The results
are given in Table 4 and the numerical results for this example are illustrated on Figure 3. Our observation in this example and

other examples indicated that Algorithm 2 is efficient in problems which the Jacobian matrix (12) is singular.
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Figure 3. The results obtained for Example 4.

Table 4. Numerical results for Example 4.

Ite Algorithm 2 Algorithm 2.1 in [47]

k ∥c(k+1) − c(k)∥ ∥f (c(k))∥ ∥f (c(k))∥
0 0.132E+01 0.256E+00 0.88831112E+00

1 0.293E-01 0.105E-01 0.3411482853E+00

2 0.610E-02 0.377E-02 0.6993713739E+00

3 0.144E-02 0.280E-03 0.2497254940E+00

4 0.106E-03 0.363E-04 0.8748208974E+00

5 0.674E-05 0.189E-05 0.1599815846E-01

6 0.607E-07 0.169E-07 0.6326446527E-03

7 0.503E-09 0.152E-09 0.1314660311E-05

8 0.245E-11 0.767E-12 0.2657927133E-10

9 0.110E-13 0.630E-14 0.7655396217E-15

10 0.294E-14 0.876E-15

Example 5 This example is an additive inverse eigenvalue problem with n = 5, λ = {0, 1, 2, 3, 4} and

A0 =


2 −0.08 0 0 0

−0.03 2 −0.08 0 0

0 −0.03 2 −0.08 0

0 0 −0.03 2 −0.08
0 0 0 −0.03 2

 , (21)

and Ai = riei
T for i = 1, 2, 3, 4, 5, where

R =

5∑
i=1

riei
T =


1 0 0.01 −0.02 0.03

−0.03 1 0 0.01 −0.02
0.02 −0.03 1 0 0.01

−0.01 0.02 −0.03 1 1

0 −0.01 0.02 −0.03 1


Supposing that the starting vector c (0) = (−2,−1, 0, 1, 2)T , Algorithm 1 converges to a solution

c (∗) = (−2.0024,−0.9979, 0.0024, 1.0027, 1.9952)T ,

and with the starting vector c (0) = (−2,−1, 0, 1, 2)T , Algorithm 2.1 in [48] converges to the same solution. We report the
obtained results in Table 5. It could be mentioned that in [48], the smallest singular values are used and the system of nonlinear
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Table 5. Numerical results for Example 5.

Iteration Algorithm 2 Algorithm 2.1 in [48]

k ∥c (k+1) − c (k)∥ ∥f (c (k))∥ ∥f (c (k))∥
0 0.946E − 03 0.555E − 02 0.4625594388E − 02
1 0.242E − 05 0.826E − 05 0.3079993599E − 06
2 0.180E − 10 0.707E − 10 0.1767117906E − 14
3 0.497E − 16 0.185E − 14

equations

f (c) =


f1(c)

f2(c)
...

fn(c)

 = 0
is solved, where

fi(c) = σmin(A(c)− λiB(c)).

In addition, in each iteration of the method presented in [48], we should obtain the smallest singular values. The numerical

results are displayed in Figure 4.

0 1 2 3

k(Iteration Number)

10-15

10-10

10-5

100

||f
||

2

Figure 4. The results obtained for Example 5.

Example 6 Let us consider an additive inverse eigenvalue problem. here n = 8 and

A(c) = A0 +

8∑
i=1

ciAi , B(c) = B0 +

8∑
i=1

ciBi ,

where

A0 =



0 4 1 3 −1 1 1 7 −1 1

4 0 1 2 −1 2 1 6 −1 2

1 1 0 1 −1 3 1 5 −1 3

3 2 1 0 −1 4 1 4 −1 4

−1 −1 −1 −1 0 5 1 3 −1 5

1 2 3 4 5 0 1 2 −1 6

1 1 1 1 1 1 1 0 −1 7

7 6 5 4 3 2 1 0 −1 8

−1 −1 −1 −1 −1 −1 −1 −1 0 9

1 2 3 4 5 6 7 8 9 0


,
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Table 6. Numerical results for Example 6.

Iteration Algorithm 2

k ∥c(k+1) − c(k)∥ ∥c∗ − c(k)∥ ∥f (c(k))∥
0 0.200E + 02 0.5678E + 01 0.628E + 02

1 0.223E + 00 0.242E − 01 0.726E + 01

2 0.944E − 02 0.933E − 02 0.917E + 00

3 0.108E − 02 0.388E − 03 0.223E − 01
4 0.822E − 05 0.144E − 04 0.904E − 02
5 0.152E − 07 0.835E − 06 0.571E − 03
6 0.848E − 08 0.144E − 07 0.759E − 04
7 0.848E − 09 0.908E − 09 0.113E − 05
8 0.373E − 11 0.608E − 10 0.846E − 07
9 0.402E − 12 0.225E − 12 0.574E − 09
10 0.128E − 13 0.128E − 13 0.211E − 11

and

Ai = eiei
T , i = 1, 2, ..., 8,

B0 = I, Bi = 0, i = 1, 2, ..., 8.

In this example, the eigenvalues are given as follow:

λ∗ = {8.2933, 20.5063, 29.5033, 39.5916, 49.8555, 83.9949, 103.0154, 121.7343, 141.4475, 162.6978}

Supposing that

c (0) = (11.90788, 19.70552, 30.54550, 40.06266, 51.58714, 64.70213, 70.17068, 81.2121, 90.9911, 101.0523)T

and by performing Algorithm 2, we have

c (∗) = (10, 20, 30, 40, 50, 60, 70, 80, 90, 100)T .

Table 6 displays the values of the residual, for Algorithm 2.

Example 7 As the final example, consider an additive inverse eigenvalue problem. Where the matrices A(c), B(c) are mentioned

in Example 7 with the following parameters:

A0 =



0 4 −1 1 1 5 −1 1 1 9 −1 1 1 13 −1 1 1 17 −1 1

4 0 −1 2 1 4 −1 2 1 8 −1 2 1 12 −1 2 1 16 −1 2

−1 −1 0 3 1 3 −1 3 1 7 −1 3 1 11 −1 3 1 15 −1 3

1 2 3 0 1 2 −1 4 1 6 −1 4 1 10 −1 4 1 14 −1 4

1 1 1 1 0 1 −1 5 1 5 −1 5 1 9 −1 5 1 13 −1 5

5 4 3 2 1 0 −1 6 1 4 −1 6 1 8 −1 6 1 12 −1 6

−1 −1 −1 −1 −1 −1 0 7 1 3 −1 7 1 7 −1 7 1 11 −1 7

1 2 3 4 5 6 7 0 1 2 −1 8 1 6 −1 8 1 10 −1 8

1 1 1 1 1 1 1 1 0 1 −1 9 1 5 −1 9 1 9 −1 9

9 8 7 6 5 4 3 2 1 0 −1 10 1 4 −1 10 1 8 −1 10

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 11 1 3 −1 11 1 7 −1 11

1 2 3 4 5 6 7 8 9 10 11 0 1 2 −1 12 1 6 −1 12

1 1 1 1 1 1 1 1 1 1 1 1 0 1 −1 13 1 5 −1 13

13 12 11 10 9 8 7 6 5 4 3 2 1 0 −1 14 1 4 −1 14

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 15 1 3 −1 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 −1 16

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 −1 17

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 −1 18

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 0



,

Ai = eiei
T , i = 1, 2, ..., 20,

B0 = I, Bi = 0, i = 1, 2, ..., 20,
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Table 7. Numerical results for Example 7.

Iteration Algorithm 2

k ∥c(k+1) − c(k)∥ ∥c∗ − c(k)∥ ∥f (c(k))∥
0 0.145E + 03 0.1161E + 03 0.897E + 03

1 0.366E + 02 0.294E + 02 0.921E + 02

2 0.111E + 01 0.721E + 01 0.910E + 02

3 0.530E + 00 0.270E − 01 0.604E + 01

4 0.164E − 01 0.165E − 02 0.803E + 00

5 0.263E − 02 0.165E − 03 0.658E − 01
6 0.127E − 02 0.113E − 04 0.196E − 02
7 0.544E − 03 0.608E − 05 0.562E − 03
8 0.134E − 04 0.769E − 06 0.184E − 04
9 0.341E − 05 0.813E − 07 0.491E − 05
10 0.184E − 06 0.493E − 07 0.256E − 06
11 1.54E − 07 0.321E − 08 0.826E − 07
12 1.90E − 9 0.127E − 9 0.750E − 08
13 5.02E − 11 0.673E − 11 0.748E − 09
14 6.14E − 12 0.614E − 12 0.119E − 10

λ∗ ={5.4340, 15.2403, 29.1990, 47.3533, 82.9628, 95.5328, 105.9533, 112.0969, 116.5968, 127.7562,
135.2594, 137.3847, 147.3474, 148.9224, 157.8651, 160.3074, 171.7052, 181.2133, 199.7340, 252.1357}.

The starting vector is as follows:

c (0) =(11.9, 20.5, 30.1, 41.5, 50.7, 60.1, 71, 81, 90.7, 100.5,

111.05, 121, 131, 140.15, 151, 160.9, 171.5, 180.5, 190.5, 201)T ,

and using Algorithm 2, we get

c (∗) =(10, 20, 30, 40, 50, 60, 70, 80, 90, 100,

110, 120, 130, 140, 150, 160, 170, 180, 190, 200)T .

The numerical results and the values of the residual for Algorithm 2 are shown in Table 7.

These examples demonstrate that in Algorithm 1 quadratic convergence indeed occurs in practice, when jacobin is nonsingular.

Also Algorithm 2 is very effective when the jacobian matrix is singular.

4. Conclusions

Several problems in structure design, applied mechanics and the design of control systems can be modeled by Problem 2. In

the present paper, we have proposed an iterative method for solving parameterized inverse eigenvalue problems. In this method,

by using the bidiagonalization, we have transformed the PGIEP into a system of nonlinear equation. Then, we have applied

Newton’s method to solve the system of created nonlinear equations, and we have applied the Quasi-Newton’s in cases where

the Jacobi matrix was nonsingular. The use of bidiagonalization eliminates solving a generalized eigenvalue problem in each

iteration of the iterative method and reduces the computational complexity. The numerical results indicate the convergence of

the method and its effect for solving Problem 2.
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