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Unveiling the significance of control factors
on the vaccinated population for COVID-19
using the homotopy perturbation method

Aderonke Ola Oluwarotimia and Amos Oladele Popoolaa

The global emergence of the Coronavirus (Covid-19) has resulted in far-reaching implications, encompassing substantial

loss of human lives and the revelation of vulnerabilities in health systems across the globe. In response to this crisis,

we revisited a prior model and extended it by incorporating a vaccination control element. This novel addition involves

introducing a control factor into the vaccinated class to examine the repercussions of frequent vaccine administration

as a strategic measure to mitigate the spread of COVID-19. Of particular interest in our investigation is the exploration

of the criteria for the existence of numerical solutions to the model, achieved through the application of the Homotopy

Perturbation Method. Our preliminary findings demonstrate that the vaccine control factor exerts substantial effects on

both the susceptible and recovery classes within the model. This research contributes to the understanding of the dynamics

of COVID-19 transmission, providing insights that can inform public health strategies in the ongoing global battle against

the pandemic. Copyright c⃝ 2025 Shahid Beheshti University.

Keywords: Covid-19; Vaccine control factor; Homotopy perturbation method.

1. Introduction

The emergence of Coronavirus (COVID-19) has had widespread consequences, leading to significant loss of life and exposing

vulnerabilities in global health systems [14]. This unprecedented crisis necessitates innovative research to better understand and

address the dynamics of COVID-19 transmission. A critical milestone in the fight against the pandemic was the introduction of

the first COVID-19 vaccine on July 22, 2020 [14]. As vaccination efforts continue, it is essential to investigate their impacts on

disease transmission and public health outcomes.

Mathematical modeling has become an indispensable tool in epidemiology, providing critical insights into the spread and control

of infectious diseases. Traditional approaches often rely on ordinary or partial differential equations (ODEs/PDEs) to simulate

transmission dynamics, as demonstrated by studies on disease-free equilibrium, stability analysis, and intervention strategies

[6, 7, 19, 4, 31]. For instance, Koo et al. [19] modeled COVID-19 interventions in Singapore, highlighting the need for rapid

responses to curb community transmission. Similarly, Ahmed et al. [4] emphasized the role of asymptomatic carriers in disease

persistence, while ODE-based frameworks by Popoola et al. [28, 29], Oreyeni et al. [25], and Shah et al. [30] have been pivotal

in modeling physical and biological systems. These methodologies, however, often overlook memory effects and hereditary traits

inherent in real-world processes. To address these limitations, recent advances in modelling have revolutionized epidemiological

modeling by capturing long-range dependencies and adaptive dynamics via fractional calculus. Fractional-order models now offer

nuanced perspectives on disease control, from COVID-19 vaccination efficacy [22, 33] to malaria eradication strategies [10, 32].

For tuberculosis, Caputo fractional derivatives have refined predictions of treatment outcomes [23], while cholera models now

incorporate environmental interactions more realistically [3]. This shift from integer-order to fractional-order systems has not

only enhanced epidemiological accuracy but also extended to other domains.

Beyond public health, fractional calculus has proven transformative in financial systems, where it models adaptive behaviors like

investment decision-making under uncertainty [24]. These interdisciplinary applications underscore the versatility of fractional-

order frameworks in capturing complex, memory-dependent dynamics across both biological and socioeconomic systems. By
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bridging gaps between theoretical models and real-world phenomena, such approaches empower policymakers to design more

resilient, data-driven interventions.

Before simulation, solving mathematical models is essential for investigating the influence of various parameters. However,

obtaining analytical solutions can be challenging. Consequently, researchers often resort to numerical techniques, such as the

homotopy perturbation method, to facilitate their analyses [15, 16, 8, 7]. For instance, Kolawole et al. [18] utilized this method to

analyze the impacts of vaccination, treatment, and human compliance on COVID-19 transmission. The homotopy perturbation

method has also been successfully applied to study other viral infections, including equine infectious anemia virus (EIAV) [13]

and hepatitis B virus [9], demonstrating its effectiveness in addressing both linear and nonlinear models.

The dynamics of diseases such as COVID-19 have prompted extensive investigations in the realm of epidemiological modeling.

Ayoola et al. [12] presented a mathematical model for COVID-19 transmission that incorporates double-dose vaccination

strategies, providing insights into effective containment measures. Additionally, Kolawole et al. [18] explored the effects of

saturation terms on the SEIR epidemic model, highlighting the complexity of disease spread in populations with varying

susceptibility.

Ayoola et al. [11] further developed the understanding of how enlightenment acceptance impacts disease transmission, applying

the homotopy perturbation method to reveal critical factors influencing the spread of COVID-19. Complementing these studies,

numerous investigations have revisited and extended mathematical models to adapt to the evolving nature of the pandemic.

Similarly, Ndarou et al. [20] developed a compartmental model focusing on super-spreaders, calculating the basic reproduction

number and demonstrating the models accuracy through numerical simulations of the COVID-19 outbreak in Wuhan, China.

These efforts underscore the significance of mathematical modeling in informing vaccination strategies and managing the virus’s

spread.

There has been growing interest in using advanced mathematical tools and numerical methods to better understand and

manage the spread of infectious diseases. As epidemics continue to pose serious public health challenges, researchers have

developed and applied robust techniques to analyze the complex biological systems that underlie disease transmission. For

example, the quasilinearization-Lagrangian method has been effectively used to explore the dynamics of HIV infection in

CD4+ T cells, offering valuable insights into viral replication and the immune response [26]. Likewise, the shifted Boubaker

Lagrangian approach has shown considerable promise in solving nonlinear biological models, thanks to its flexibility and precision

in approximating analytical results [27]. Additionally, the pseudospectral Legendre method has emerged as a powerful tool for

tackling time-dependent problems, particularly in modeling the progression of diseases like HIV [1]. These advances highlight

the expanding role of fractional calculus and spectral techniques in capturing the real-world behavior of infectious diseases and

improving the reliability of epidemiological models. Despite these advancements, a pressing need remains to integrate vaccination

control elements within established models to assess their effectiveness in mitigating transmission. In response to this urgency,

our study revisits and extends a previously established model by introducing a vaccination control factor. This adaptation aims

to evaluate the potential impacts of frequent vaccine administration on the spread of COVID-19. To achieve this, we employ

the Homotopy Perturbation Method to explore the criteria for the existence of numerical solutions, leveraging its effectiveness

in analyzing complex systems [16, 2].

The aim of this study is to enhance the understanding of COVID-19 dynamics by analyzing the role of vaccination in

disease transmission and recovery. Our research not only bridges the gap between theoretical modeling and practical public

health strategies but also provides valuable insights that can inform evidence-based decision-making in the ongoing global battle

against the pandemic. By highlighting the significant effects of the vaccination control factor on both the susceptible and recovery

classes, this study contributes to our collective understanding of effective COVID-19 mitigation strategies.

1.1. Homotopy Perturbation Method

According to [17], the methodology of the HPM begins by considering the following differential equation:

D(ϖ) = g(υ), υ ∈ Φ. (1)

Subject to the boundary condition:

ψ(ϖ,ϖn) = 0, υ ∈ Π. (2)

The differential operator D acts on the analytic function g(υ). The boundary operator is represented by ψ, and the external

normal vector derivative, denoted by ϖn, is derived from the domain Φ. The boundary of the domain is denoted by Π.

The operator D(ϖ) is composed of linear and nonlinear parts such that:

D(ϖ) = QT (ϖ) + µT (ϖ). (3)

Thus, we have:

QT (ϖ) + µT (ϖ) = g(υ), ϖ ∈ Φ. (4)

We can construct a Homotopy for equation (4) as follows:

ξ(ζ, p) = (1− p) [QT (ζ)−QT (ϖ0)] + p [D(ζ)− g(υ)] = 0. (5)
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Here, p ∈ [0, 1] is an embedding parameter. Expanding equation (5) yields:

ξ(ζ, p) = QT (ζ)−QT (ϖ0) + p [QT (ϖ0) + µT (ϖ0)− g(υ)] = 0. (6)

As p → 0, equation (6) simplifies to:

ξ(ζ, 0) = QT (ζ)−QT (ϖ0) = 0. (7)

When p → 1, it becomes:

ξ(ζ, 1) = D(ζ)− g(υ) = 0. (8)

The solution to equation (8) can be obtained iteratively by assuming a power series expansion in p:

ζ(t) = ζ0(t) + pζ1(t) + p
2ζ2(t) + · · ·+ pnζn(t). (9)

Evaluating ξ(ζ, 1) using equation (9), we compare the coefficients of equal powers of p and subsequently solve to obtain the

values of ζ0(t), ζ1(t), and ζ2(t). The approximate solution of equation (8) is given by:

ζ(t) = lim
p→1

ζn(t) = ζ0(t) + ζ1(t) + ζ2(t) + · · · . (10)

2. Model Description

Consider N(t) as the overall human population, which is further categorized into six classes: susceptible individuals S(t), exposed

individuals E(t), asymptomatic infected individuals IA(t), symptomatic infected individuals IS(t), quarantined individuals Q(t),

and individuals who have recovered from Covid-19 R(t). We present a compartmental-based model for analyzing the dynamics of

COVID-19 disease, using the following system of ordinary differential equations (ODEs), given by (11) and graphically represented

in Figure 1.

dS(t)

dt
= Λ(1− αVC)− (τ + µ)S(t)− βS(t)E(t) + ρR(t),

dE(t)

dt
= βS(t)E(t)− (γ + µ+ η + σ)E(t),

dQ(t)

dt
= τS(t) + γE(t)− (µ+ υ + θ)Q(t),

dIA(t)

dt
= σE(t) + θQ(t)− (µ+ r1)IA(t),

dIS(t)

dt
= ηE(t) + υQ(t)− (δ + µ+ r2)IS(t),

dR(t)

dt
= ΛαVC + r1IA(t) + r2IS(t)− (µ+ ρ)R(t).

(11)

The system is subject to the following initial conditions:

S(0) = s0, E(0) = e0, Q(0) = q0, IA(0) = i0, IS(0) = i0, R(0) = r0,

with the total human population given by:

N(t) = S(t) + E(t) +Q(t) + IA(t) + IS(t) + R(t). (12)
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Figure 1. Schematic flow of the model

Table 1.Model nomenclatures, description and values

Description Parameter Value

Transfer rate from susceptible individuals to

quarantine

τ 0.2× 10−3

Contact rate between susceptible and exposed

individuals

β 0.805× 10−4

Fitted Mortality rate due to coronavirus in

symptomatic infected individuals

δ 0.1× 10−4

Control factor α 0.3× 10−3
Rate of transfer of exposed individuals to

quarantine

γ 0.2× 10−3

Transfer rate from exposed individuals to symp-

tomatic infected

η 0.478× 10−2

Rate of transfer of quarantine to asymptomatic

infected individuals

θ 0.101× 10−1

Natural mortality rate µ 0.106× 10−1
Fitted rate of transfer of quarantine to symp-

tomatic infected individuals

υ 0.3× 10−3

Rate of transfer of exposed to asymptomatic

infected individuals

σ 0.668× 10−1

Recruitment (natality) rate Λ 200

Recovery rate of asymptomatic infected individu-

als

r1 0.5× 10−4

Assumed recovery rate of symptomatic infected

individuals

r2 0.1× 10−4

Rate of transfer of vaccinated to recovered

individuals

VC 0.1× 10−3

Rate of transfer of recovered to susceptible

individuals

ρ 0.5× 10−2

Initial susceptible population S(0) 500

Initial exposed individuals E(0) 2003

Initial quarantined individuals Q(0) 2300

Initial asymptomatic infected individuals IA(0) 2000

Initial symptomatic infected individuals IS(0) 416

Initial recovered individuals R(0) 155
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2.1. Positivity and Boundedness

Theorem 1: Let Ω denote the region 0 ≤ α ≤ Ω, then the equation has a unique solution. Since the human population in the
model has been described, it is vital to show that the state parameters S(t), E(t), Q(t), IA(t), IS(t), and R(t) are non-negative

for all t ≥ 0. A solution with positive data remains positive for all t ≥ 0 and is bounded. It is easy to see from the system that:

Ω =
{
[S(t) + E(t) +Q(t) + IA(t) + IS(t) + R(t)] ∈ R6+;N(t) ≤ Λ(1−αVc )

µ

}
The total population at any point in time t is given by:
dN(t)
dt
= d
dt
[S(t) + E(t) +Q(t) + IA(t) + IS(t) + R(t)]

dN(t)
dt
= dS
dt
+ dE
dt
+ dQ
dt
+ dIA

dt
+ dIS

dt
+ dR
dt

dN(t)
dt
=

[
Λ(1− αVc)− (τ + µ)S − βSE + ρR + βSE − (γ + µ+ η + σ)E + τS + γE − (µ+ ν + θ)Q+
σE + θQ− (µ+ r1)IA + ηE + νθ − (δ + µ+ r2)IS + ΛαVc + r1IA + r2IS − (µ+ ρ)R

]
dN(t)
dt
= Λ− δIS − µ(S + E +Q+ IA + IS + R)

dN(t)
dt
= Λ− δIS − µN; dN(t)dt

+ µN ≤ Λ− δIS

(13)

Integrating the equation above yields:

N(t)eµt =
Λ− δIS
µ

eµt + C

where C = N(0)− Λ−δIS
µ
. As C is a constant at the initial time t and for N(t) such that

lim
t→∞

N(t) ≤ lim
t→∞

[
Λ− δIS
µ

+

(
N(0)− Λ− δIS

µ

)
eµt

]
=
Λ− δIS
µ

,

we conclude that if N(0) ≤ Λ−δIS
µ
, then N(t) ≤ Λ−δIS

µ
.

Hence, it is sufficient to consider the dynamics of the model domain R6+. In this region, the model can be considered to be
mathematically and epidemiologically well posed.

2.2. Existence and Boundedness Theorem

The existence and boundedness of solutions to the proposed model are crucial for ensuring that the mathematical framework

accurately represents the dynamics of the system being studied. By establishing these properties, we can guarantee that the

solutions obtained from the model are valid and meaningful in the context of the underlying biological or epidemiological processes.

Theorem 1 Let g : Rn → Rn be a continuously differentiable function defined as:

g1 = Λ(1− αVc)− (τ + µ)S − βSE + ρR,
g2 = βSE − (γ + µ+ η + σ)E,
g3 = τS + γE − (µ+ ν + θ)Q,
g4 = σE + θQ− (µ+ r1)IA,
g5 = ηE + νθ − (δ + µ+ r2)Is ,
g6 = ΛαVc + r1IA + r2Is − (µ+ ρ)R.

(14)

If the partial derivatives of g exist and are continuous and bounded in R6, then the system of equations g(x) = 0 has a unique
solution in R6.

Proof: To demonstrate the existence of a solution for the model, we will take the partial derivatives of the equations defined in

g.

Let:
g1 = Λ(1− αVc)− (τ + µ)S − βSE + ρR,
g2 = βSE − (γ + µ+ η + σ)E,
g3 = τS + γE − (µ+ ν + θ)Q,
g4 = σE + θQ− (µ+ r1)IA,
g5 = ηE + νθ − (δ + µ+ r2)Is ,
g6 = ΛαVc + r1IA + r2Is − (µ+ ρ)R.

Thus, taking partial derivatives of these equations:

1. For g1:∣∣∣∣∂g1∂S
∣∣∣∣ = τ + µ+ β <∞, ∣∣∣∣∂g1∂E

∣∣∣∣ = β <∞, ∣∣∣∣∂g1∂Q
∣∣∣∣ = 0 <∞, ∣∣∣∣∂g1∂IA

∣∣∣∣ = 0 <∞, ∣∣∣∣∂g1∂Is
∣∣∣∣ = 0 <∞, ∣∣∣∣∂g1∂R

∣∣∣∣ = ρ <∞.
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2. For g2:∣∣∣∣∂g2∂S
∣∣∣∣ = β <∞, ∣∣∣∣∂g2∂E

∣∣∣∣ = β + γ + µ+ η + σ <∞, ∣∣∣∣∂g2∂Q
∣∣∣∣ = 0 <∞, ∣∣∣∣∂g2∂IA

∣∣∣∣ = 0 <∞, ∣∣∣∣∂g2∂Is
∣∣∣∣ = 0 <∞, ∣∣∣∣∂g2∂R

∣∣∣∣ = 0 <∞.
3. For g3:∣∣∣∣∂g3∂S

∣∣∣∣ = τ <∞, ∣∣∣∣∂g3∂E
∣∣∣∣ = γ <∞, ∣∣∣∣∂g3∂Q

∣∣∣∣ = µ+ ν + θ <∞, ∣∣∣∣∂g3∂IA

∣∣∣∣ = 0 <∞, ∣∣∣∣∂g3∂Is
∣∣∣∣ = 0 <∞, ∣∣∣∣∂g3∂R

∣∣∣∣ = 0 <∞.
4. For g4:∣∣∣∣∂g4∂S

∣∣∣∣ = 0 <∞, ∣∣∣∣∂g4∂E
∣∣∣∣ = σ <∞, ∣∣∣∣∂g4∂Q

∣∣∣∣ = θ <∞, ∣∣∣∣∂g4∂IA

∣∣∣∣ = µ+ r1 <∞, ∣∣∣∣∂g4∂Is
∣∣∣∣ = 0 <∞, ∣∣∣∣∂g4∂R

∣∣∣∣ = 0 <∞.
5. For g5:∣∣∣∣∂g5∂S

∣∣∣∣ = 0 <∞, ∣∣∣∣∂g5∂E
∣∣∣∣ = η <∞, ∣∣∣∣∂g5∂Q

∣∣∣∣ = ν <∞, ∣∣∣∣∂g5∂IA

∣∣∣∣ = 0 <∞, ∣∣∣∣∂g5∂Is
∣∣∣∣ = δ + µ+ r2 <∞, ∣∣∣∣∂g5∂R

∣∣∣∣ = 0 <∞.
6. For g6:∣∣∣∣∂g6∂S

∣∣∣∣ = 0 <∞, ∣∣∣∣∂g6∂E
∣∣∣∣ = 0 <∞, ∣∣∣∣∂g6∂Q

∣∣∣∣ = 0 <∞, ∣∣∣∣∂g6∂IA

∣∣∣∣ = r1 <∞, ∣∣∣∣∂g6∂Is
∣∣∣∣ = r2 <∞, ∣∣∣∣∂g6∂R

∣∣∣∣ = µ+ ρ <∞.
The partial derivatives of these functions exist, are continuous, and are bounded. Therefore, by the continuity and boundedness

conditions established, the system of equations g(x) = 0 exists and has a unique solution. It is well-posed in R6.

2.3. Existence of Disease-Free Equilibrium (DFE)

To determine the critical points, we set the differential equations to zero at the disease-free equilibrium. Specifically, at the

equilibrium state where IA = IS = E = 0, the DFE can be characterized as follows:

DFE = (S0, E0, Q0, IA0, IS0, R0) = (S0, 0, 0, 0, 0, R0)

DFE =

(
S =

Λ(µ+ ρ− µαVC)
(τ + µ)(µ+ ρ)

, E = 0, Q = 0, IA = 0, IS = 0, R =
ΛαVC
(µ+ ρ)

)
E1 =

(
Λ(µ+ ρ− µαVC)
(τ + µ)(µ+ ρ)

, 0, 0, 0, 0,
ΛαVC
(µ+ ρ)

)

3. Basic Reproduction Number (R0)

The basic reproduction number, denoted by R0, is the expected value of the infection rate per time unit that occurs in a

susceptible population, caused by an infected individual. It is defined as follows:

R0 = ρFV
−1

where:

• F is the rate of appearance of new infections in the compartment.
• V is the rate of transfer of individuals from one compartment to another.
• ρ is the spectral radius.
• R0 is the dominant eigenvalue of FV −1.

The matrices F and V are given by:

F =


βS(t) 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


Substituting S(t) = S0 =

Λ(µ+ρ−µαVC )
(τ+µ)(µ+ρ)

, we get the Jacobian matrix of F at the Disease-Free Equilibrium (DFE):

F =


β Λ(µ+ρ−µαVC )(τ+µ)(µ+ρ) 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


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Also, the matrix V is given by:

V =


−(γ + µ+ η + σ)E(t)

τS(t) + γE(t)− (µ+ υ + θ)Q(t)
σE(t) + θ(t)Q− (µ+ r1)IA(t)

ηE(t)− υQ(t)− (δ + µ+ r2)IS(t)


The Jacobian matrix of V at DFE is:

V =


−(γ + µ+ η + σ) 0 0 0

γ −(µ+ υ + θ) 0 0

σ θ −(µ+ r1) 0

η υ 0 −(δ + µ+ r2)


Define the following parameters:

a = −(γ + µ+ η + σ)
b = −(µ+ υ + θ)
c = −(µ+ r1)
d = −(δ + µ+ r2)
e = −(τ + µ)
f = −(µ+ ρ)
g = −αVCµ

Thus, the inverse of V is given by:

V −1 =


1
a

0 0 0

− γ
ab

1
b

0 0
γθ−σb
abc

− θ
bc

1
c
0

γυ−bη
abd

− υ
bd

0 1
d


Finally, the basic reproduction number is:

R0 = FV
−1

R0 =


βS(t) 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




1
a

0 0 0

− γ
ab

1
b

0 0
γθ−σb
abc

− θ
bc

1
c
0

γυ−bη
abd

− υ
bd

0 1
d

 (15)

Where S0 =
Λ(µ+ρ−µαVC )
(τ+µ)(µ+ρ)

and a = −(γ + µ+ η + σ)
Substituting into Equation (15) we have

R0 =


β
Λ(µ+ρ−µαVC )
(τ+µ)(µ+ρ)

−(γ+µ+η+σ) 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 =

− βΛ(µ+ρ−µαVC )
(τ+µ)(µ+ρ)(γ+µ+η+σ)

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 (16)

ρ1(FV
−1) = − βΛ(µ+ ρ− µαVC)

(τ + µ)(µ+ ρ)(γ + µ+ η + σ)
= R0

Where ρ1 is the spectral radius of the next generation matrix FV
−1:

R0 = −
βΛ(µ+ ρ− µαVC)

(τ + µ)(µ+ ρ)(γ + µ+ η + σ)

4. Local Stability Analysis of the Disease-Free Equilibrium (DFE)

Theorem 2: The disease-free state of the model is locally asymptotically stable if the threshold for disease spread is less than

one (R0 < 1), and it becomes unstable when this threshold exceeds one (R0 > 1).

Proof: The Jacobian matrix corresponding to system (10) is given by
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J =



− (τ + µ)− βE −βS 0 0 0 ρ

βE βS − (γ + µ+ η + σ) 0 0 0 0

τ γ − (µ+ υ + θ) 0 0 0

0 σ θ − (µ+ r1) 0 0

0 η υ 0 − (δ + µ+ r2) 0

0 0 0 r1 r2 − (µ+ ρ)


At DFE, E∗ = Q∗ = I∗A = I

∗
S = R

∗ = 0 and

S0 =
Λ(µ+ ρ− µαVC)
(τ + µ)(µ+ ρ)

which implies

JDFE =



− (τ + µ) −β
(
Λ(µ+ρ−µαVC )
(τ+µ)(µ+ρ)

)
0 0 0 ρ

0 β
(
Λ(µ+ρ−µαVC )
(τ+µ)(µ+ρ)

)
− (γ + µ+ η + σ) 0 0 0 0

τ γ − (µ+ υ + θ) 0 0 0

0 σ θ − (µ+ r1) 0 0

0 η υ 0 − (δ + µ+ r2) 0

0 0 0 r1 r2 − (µ+ ρ)


For easy simplification, let

a = −(γ + µ+ η + σ),
b = −(µ+ υ + θ),
c = −(µ+ r1),
d = −(δ + µ+ r2),
e = −(τ + µ),
f = −(µ+ ρ),
g = −αVCµ.

Thus,

JDFE =



e β
(
Λ(f−g)
ef

)
0 0 0 ρ

0 β
(
Λ(g−f )
ef

)
+ a 0 0 0 0

τ γ b 0 0 0

0 σ θ c 0 0

0 η υ 0 d 0

0 0 0 r1 r2 f


The characteristic polynomial of the Jacobian matrix of Disease Free Equilibrium is given by

Det(JDFE − λI)
where λ is the eigenvalue and I is the identity matrix.

To give

JDFE − λI =



e − λ1 β
(
Λ(f−g)
ef

)
0 0 0 ρ

0 β
(
Λ(g−f )
ef

)
+ a − λ2 0 0 0 0

τ γ b − λ3 0 0 0

0 σ θ c − λ4 0 0

0 η υ 0 d − λ5 0

0 0 0 r1 r2 f − λ6


Computing the eigenvalues of ((3.28),

λ1 = −(τ + µ) < 0, λ2 = − (γ + µ+ η + σ) < 0, λ3 = − (µ+ υ + θ) < 0,
λ4 = − (µ+ r1) < 0, λ5 = − (δ + µ+ r2) < 0 , λ6 = − (τ + µ) < 0,

Since all the Eigen values are negatively invariant and R0<1, then the Disease free Equilibrium (DFE) is locally asymptotically

stable.

This completes the proof.
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5. Numerical Solution via HPM

In this section, the homotopy perturbation method is applied to obtain the approximate solution of the system of differential

equations in (17).

dS(t)
dt
= Λ(1− αVC)− (τ + µ)S(t)− βS(t)E(t) + ρR

dE(t)
dt
= βS(t)E(t)− (γ + µ+ η + σ)E(t)

dQ(t)
dt
= τS(t) + γE(t)− (µ+ υ + θ)Q(t)

dIA(t)
dt
= σE(t) + θQ(t)− (µ+ r1)IA(t)

dIS(t)
dt
= ηE(t) + υQ(t)− (δ + µ+ r2)IS(t)

dR(t)
dt
= ΛαVC + r1IA(t) + r2IS(t)− (µ+ ρ)R(t)

(17)

Subject to initial conditions: S(0) = s0, E(0) = e0, Q(0) = q0, IA(0) = iA0, IS(0) = iS0, R(0) = r0.

The following system of power series is assumed to be the solution to the problem:

S(t) = s0(t) + ps1(t) + p
2s2(t) + . . .

E(t) = e0(t) + pe1(t) + p
2e2(t) + . . .

Q(t) = q0(t) + pq1(t) + p
2q2(t) + . . .

IA(t) = iA0(t) + piA1(t) + p
2iA2(t) + . . .

IS(t) = iS0(t) + piS1(t) + p
2iS2(t) + . . .

R(t) = r0(t) + pr1(t) + p
2r2(t) + . . .

Here, the algorithm discussed in the methodology shall be applied to solve the proposed system. This is initiated by constructing

the following correctional functional, given by

(1− P ) dS
dt
+ P

[
dS
dt
− (Λ(1− αVC)− (τ + µ)S − βSE + ρR)

]
(1− P ) dE

dt
+ P

[
dE
dt
− (βSE − (γ + µ+ η + σ)E)

]
(1− P ) dQ

dt
+ P

[
dQ
dt
− (τS + γE − (µ+ υ + θ)Q)

]
(1− P ) dIA

dt
+ P

[
dIA
dt
− (σE + θQ− (µ+ r1)IA)

]
(1− P ) dIS

dt
+ P

[
dIS
dt
− (ηE + υQ− (δ + µ+ r2)IS)

]
(1− P ) dR

dt
+ P

[
dR
dt
− (ΛαVC + r1IA + r2IS − (µ+ ρ)R)

]
For P 0:

dS0(t)

dt
= 0,

dE0(t)

dt
= 0,

dQ0(t)

dt
= 0,

dIA0(t)

dt
= 0,

dIS0(t)

dt
= 0,

dR0(t)

dt
= 0

Solving the above equations, we obtain

s0(t) = s0, e0(t) = e0, q0(t) = q0, iA0(t) = iA0, iS0(t) = iS0, r0(t) = r0

Also, the coefficient of p1 is given as:
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dS0
dt
= (Λ (1− αVc)− (τ + µ)S0 − βS0E0 + ρR0)

dE0
dt
= (βS0E0 − (γ + µ+ η + σ)E0)

dQ0
dt
= (τS0 + γE0 − (µ+ υ + θ)Q0)

dIA0
dt
= (σE0 + θQ0 − (µ+ r1) IA0)

dIS0
dt
= (ηE0 + υQ0 − (δ + µ+ r2) IS)

dR0
dt
= (ΛαVc + r1IA0 + r2IS0 − (µ+ ρ)R0)

(18)

Solving this system of equations yields:

s1 (t) = (−τs0 + Λ− βs0e0 − ΛαVc + ρr0 − µs0) t

e1 (t) = −e0 (γ + µ+ η + σ − βs0) t

q1 (t) = (−θq0 + τs0 − νq0 − µq0 + γe0) t

ia (t) = (θq0 + σe0 − ia0z − µia0) t

is (t) = (−is0k + ηe0 − µis0 − δis0 + νq0) t

r1 (t) = (−µr0 + ΛαVc + ia0z − ρr0 + is0k) t

Similarly, comparing the coefficient of p2 is given as :

d
dt
s2(t) + µs1(t) + τs1(t) + βs0(t)e1(t)− ρr1(t) + βs1(t)e0(t) = 0

d
dt
e2(t)− βs1(t)e0(t) + γe1(t) + σe1(t) + ηe1(t) + µe1(t)− βs0(t)e1(t) = 0

d
dt
q2(t)− γe1(t)− τs1(t) + νq1(t) + µq1(t) + θq1(t) = 0

d
dt
ia2(t)− θq1(t)− σe1(t) + zia1(t) + µia1(t) = 0

d
dt
is2(t)− νq1(t)− ηe1(t) + µis1(t) + δis1(t) + r2is1(t) = 0

d
dt
r2(t)− kis1(t)− zia1(t) + ρr1(t) + µr1(t) = 0

(19)

In solving this system of differential equations:

s2(t) =
1
2
t2 (−2r0ρµ+ 2µτs0 + VcαΛµ− r0ρτ + VcαΛτ

− β2s20e0 − ΛVcαρ+ ia0zρ+ is0kρ+ β2e20s0 − βe0Λ + 3µs0βe0 + 2τs0βe0 + βs0e0σ + βs0e0γ + βs0e0η
− βe0ρr0 + βe0VcΛ− Λµ+ µ2s0 + τ2s0 − Λτ − r0ρ2

)
e2(t) = − 12e0t

2
(
β2e0s0 − β2s20 + βτs0 − βΛ− 2µγ − 2σγ − 2ηγ

−2σµ− 2ησ − 2ηµ− γ2 + σ2 − η2 − µ2 + 3βµs0 − βρr0 + 2βs0σ − 2βs0γ − 2βs0η − βVcαΛ
)

q2(t) = − 12 t
2
(
2µτs0 − r0ρτ + VcαΛτ − q0v 2 − q0µ2 − q0θ2 + 2γe0µ+ γe0σ

+γe0η + γ
2e0 − 2q0θv + vτs0 − 2q0µv + vγe0 − 2q0θµ+ s0τθ + θγe0 + τs0βe0 − βs0e0γ + τ2s0 − Λτ

)
ia2(t) = − 12 t

2
(
θ2q0 − s0τθ + q0θv − 2q0θµ− γe0θ − βs0e0σ

+2µe0σ + σ
2e0 + γe0σ + σe0η + zq0θ + ze0σ − ia0z2 − 2ia0µz − u2ia0

)
is2(t) = − 12 t

2
(
−is0u2 − is0δ2 − is0kµ− 2is0δµ− is0kδ + δηe0

+ δvq0 − is0kr2 + r2ηe0 − µis0r2 − r2δis0 + r2vq0 + v 2q0 + γηe0 + σηe0 + 2ηe0µ+ η2e0 + q0θv − s0τv − 2vq0µ− vγe0 − βs0e0η
)
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r2(t) =
1
2
t2

(
−is0k2 + ke0η − 2kµis0 − kδis0 + kvq0 + zq0θ + zσe0

+ ia0z
2 − 2ia0µz + 2r0µρ+ αVcΛρ+ zia0ρ+ ρ2r0 − ρkis0 + r0µ2 − ΛαVcµ

)
The solution for each class is obtained by summing its respective approximations.

Such that

S(t) =

2∑
n=0

sn(t), E(t) =

2∑
n=0

en(t), Q(t) =

2∑
n=0

qn(t), Ia(t) =

2∑
n=0

ian(t), Is(t) =

2∑
n=0

isn(t), R(t) =

2∑
n=0

rn(t). (20)

6. Special solution by Laplace Adomian decomposition method

To apply the LADM to solve system (11) , we take the Laplace transform of both sides of the system. Recall that

L
[
dy
dt

]
= sL [y(t)]− y(0). Hence, we have:

L

[
dS

dt

]
= L [Λ(1− αVC)− (γ + µ)S(t)− βS(t)E(t) + ρR(t)] ,

L

[
dE

dt

]
= L [βS(t)E(t)− (γ + µ+ η + σ)E(t)] ,

L

[
dQ

dt

]
= L [τS(t) + γE(t)− (µ+ v + θ)Q(t)] ,

L

[
dIA
dt

]
= L [σE(t) + θQ(t)− (µ+ n)IA(t)] ,

L

[
dIS
dt

]
= L [ηE(t) + vQ(t)− (δ + µ+ r2)IS(t)] ,

L

[
dR

dt

]
= L [ΛαVC + nIA(t) + r2IS(t)− (µ+ ρ)R(t)] . (21)

This simplifies to:

sL [S(t)]− S(0) = Λ(1− αVC)
s

− (γ + µ)L [S(t)]− βL [S(t)E(t)] + ρL [R(t)],

sL [E(t)]− E(0) = βL [S(t)E(t)]− (γ + µ+ η + σ)L [E(t)],
sL [Q(t)]−Q(0) = τL [S(t)] + γL [E(t)]− (µ+ v + θ)L [Q(t)],
sL [IA(t)]− IA(0) = σL [E(t)] + θL [Q(t)]− (µ+ n)L [IA(t)],
sL [IS(t)]− IS(0) = ηL [E(t)] + vL [Q(t)]− (δ + µ+ r2)L [IS(t)],

sL [R(t)]− R(0) = ΛαVC
s
+ nL [IA(t)] + r2L [IS(t)]− (µ+ ρ)L [R(t)]. (22)

Rearrange each equation to solve for L [S(t)], L [E(t)], L [Q(t)], L [IA(t)], L [IS(t)], L [R(t)]:

L [S(t)] =
S(0)

s
+
Λ(1− αVC)

s2
− (γ + µ)

s
L [S(t)]− β

s
L [S(t)E(t)] +

ρ

s
L [R(t)],

L [E(t)] =
E(0)

s
+
β

s
L [S(t)E(t)]− (γ + µ+ η + σ)

s
L [E(t)],

L [Q(t)] =
Q(0)

s
+
τ

s
L [S(t)] +

γ

s
L [E(t)]− (µ+ v + θ)

s
L [Q(t)],

L [IA(t)] =
IA(0)

s
+
σ

s
L [E(t)] +

θ

s
L [Q(t)]− (µ+ n)

s
L [IA(t)],

L [IS(t)] =
IS(0)

s
+
η

s
L [E(t)] +

v

s
L [Q(t)]− (δ + µ+ r2)

s
L [IS(t)],

L [R(t)] =
R(0)

s
+
ΛαVC
s2

+
n

s
L [IA(t)] +

r2
s

L [IS(t)]−
(µ+ ρ)

s
L [R(t)]. (23)

Express each variable as an infinite series:
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S(t) =

∞∑
n=0

Sn(t), E(t) =

∞∑
n=0

En(t), Q(t) =

∞∑
n=0

Qn(t),

IA(t) =

∞∑
n=0

IAn(t), IS(t) =

∞∑
n=0

ISn(t), R(t) =

∞∑
n=0

Rn(t). (24)

For the nonlinear term S(t)E(t), use the Adomian polynomials An:

S(t)E(t) =

∞∑
n=0

An, where An =

n∑
k=0

Sk(t)En−k(t).

The initial approximations are derived from the initial conditions and the constant terms:

S0(t) = L −1
[
S(0)
s
+ Λ(1−αVC )

s2

]
= S(0) + Λ(1− αVC)t,

E0(t) = L −1
[
E(0)
s

]
= E(0),

Q0(t) = L −1
[
Q(0)
s

]
= Q(0),

IA0(t) = L −1
[
IA(0)
s

]
= IA(0),

IS0(t) = L −1
[
IS(0)
s

]
= IS(0),

R0(t) = L −1
[
R(0)
s
+ ΛαVC

s2

]
= R(0) + ΛαVCt.

(25)

The recursive relations are used to compute Sn+1(t), En+1(t),Qn+1(t):

Sn+1(t) = L −1
[
− (γ + µ)

s
L [Sn(t)]−

β

s
L [An] +

ρ

s
L [Rn(t)]

]
,

En+1(t) = L −1
[
β

s
L [An]−

(γ + µ+ η + σ)

s
L [En(t)]

]
,

Qn+1(t) = L −1
[
τ

s
L [Sn(t)] +

γ

s
L [En(t)]−

(µ+ v + θ)

s
L [Qn(t)]

]
,

IAn+1(t) = L −1
[
σ

s
L [En(t)] +

θ

s
L [Qn(t)]−

(µ+ n)

s
L [IAn(t)]

]
,

ISn+1(t) = L −1
[
η

s
L [En(t)] +

v

s
L [Qn(t)]−

(δ + µ+ r2)

s
L [ISn(t)]

]
,

Rn+1(t) = L −1
[
n

s
L [IAn(t)] +

r2
s

L [ISn(t)]−
(µ+ ρ)

s
L [Rn(t)]

]
. (26)

The approximate solution is obtained by summing the initial and higher-order terms:

S(t) =

4∑
n=0

Sn(t), E(t) =

4∑
n=0

En(t), Q(t) =

4∑
n=0

Qn(t),

IA(t) =

4∑
n=0

IAn(t), IS(t) =

4∑
n=0

ISn(t), R(t) =

4∑
n=0

Rn(t). (27)

7. Results

Evaluating (20) and (27) using the numerical values of parameters in Table 1 respectively yields the polynomial solutions of

HPM and LADM in (28) and (29):

Sh(t) = 500 + 114.7542440 t − 8.178754620 t2 + 0.5809353103 t3,

Eh(t) = 2003− 84.3863900 t + 11.02917252 t2 − 0.8543170867 t3,

Qh(t) = 2300− 47.7994 t + 0.5049304855 t2 − 0.003344485538 t3,

IAh(t) = 2000 + 135.73040 t − 3.782656775 t
2 + 0.2607112723 t3,

ISh(t) = 416 + 5.84642 t − 0.2398978723 t
2 + 0.01847287973 t3,

Rh(t) = 155− 2.31383400 t + 0.02147039730 t2 − 0.0001754900052 t3.

(28)
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and

SL(t) = 500 + 114.7542440 t − 8.178754620 t2 + 0.5809353103 t3,

EL(t) = 2003− 84.38639000 t + 11.02917253 t2 − 0.8543170867 t3,

QL(t) = 2300− 47.79940000 t + 0.5049304854 t2 − 0.003344485538 t3,

IAL(t) = 2000 + 135.73040 t − 3.782656777 t
2 + 0.2607112725 t3,

ISL(t) = 416 + 5.84642 t − 0.2398978722 t
2 + 0.01847287974 t3,

RL(t) = 155− 2.313834000 t + 0.02147039730 t2 − 0.0001754900051 t3.

(29)

In similar fashion to [21, 5], the model solutions using both the Homotopy Perturbation Method (HPM) and Laplace Adomian

Decomposition Method (LADM) yielded closely matching polynomial approximations for the compartments of the epidemic

model, confirming the reliability of these analytical techniques. Over the time interval analyzed, the susceptible population

increased from 500 to approximately 1295, suggesting net recruitment or births exceeding infection losses, this observation

closely aligned with the outcome of [18]. The exposed class steadily declined from 2003 to 1784, reflecting progression to

infectious or quarantined states. Similarly, the quarantined population decreased from 2300 to 2073, indicating recovery or

release. In contrast, the asymptomatic infectious group grew notably from 2000 to 2602, signaling active disease transmission,

while the symptomatic infectious increased modestly from 416 to 441. The recovered population showed a slight initial decline

from 155 to 144, possibly due to delayed recoveries or demographic factors. These trends collectively illustrate the nonlinear

disease dynamics captured by the model and highlight ongoing transmission alongside effective progression through disease

stages.

Table 2. Population values at different time steps

Time Step Sh(t) Eh(t) Qh(t) IAh(t) ISh(t) Rh(t)

1 500.0000000 2003.000000 2300.000000 2000.000000 416.000000 155.000000

2 617.3652905 1928.888516 2252.702168 2132.181578 421.623072 152.7074655

3 747.7670179 1872.922211 2206.393879 2257.999718 426.851257 150.4568825

4 900.5460036 1832.265915 2161.054421 2378.149991 431.733239 148.2473622

5 1081.882268 1804.102674 2116.662651 2492.870228 436.284953 146.0781246

6 1294.811849 1784.474741 2073.196996 2602.044565 440.497031 143.9484992

8. Numerical Simulations

In this section, we utilize Maple 18 software to perform numerical simulations on the mathematical model. The simulation

examines the time variation of the effect of the control factor (α) on the susceptible class variables and the relapse rate of

recovered individuals in the model. The results are given as Figures 2 to 5.

Figure 2. Impact of the control factor α on the Susceptible Class over time.
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Figure 3. Influence of the control factor α on the Recovery Class as a function of time.

Figure 4. Influence of relapse rate of recovered individuals ρ on susceptible population

Figure 5. Influence of relapse rate of recovered individuals ρ on Recovered population
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9. Discussion

Figure 2 shows how the number of susceptible individuals changes over a 10-month period, starting with an initial population of

50,000. Without any control measures in place (when α = 0), the number of susceptible people actually increases, reaching a

peak of about 70,000 within the first six months. This rise could be due to factors like population growth or people moving into

the susceptible group. However, after this peak, the number begins to drop slightly, ending at around 65,000 by the 10th month.

When control measures are introduced and gradually increased, the trend changes noticeably. With a 25% control rate

(α = 0.25), the susceptible population no longer grows as much and remains around 50,000 by the end of the period. This

suggests that even moderate intervention can slow down the spread and keep more people from becoming susceptible.

As the level of control increases further, the number of susceptible individuals drops more sharply. At a 75% control rate, the

population falls to about 18,000 by month 10. And when control is at its maximum100%the susceptible population drops to zero.

This clearly shows that strong control measures are highly effective at reducing the number of people at risk of infection. Figure

3 illustrates how the recovered population, R(t), changes over a 10-month period under different levels of control effectiveness.

The graph starts with a small number of recovered individualsonly about 155. However, as time progresses, the number of

recovered people grows significantly, with the final size depending heavily on the strength of the control measures in place.

When control is highly effective (100% control), the recovered population surpasses 70,000 by the end of the 10 months.

This sharp increase suggests that with strong interventions (such as treatment, isolation, or vaccination), a large portion of the

population successfully recovers from the infection.

In the case of a 75% control rate, the growth is still substantial but less dramatic, with the recovered population reaching

around 50,000. On the other hand, when there is no control at all (0% effectiveness), the number of recovered individuals

remains quite lowfewer than 10,000indicating limited recovery likely due to ongoing transmission and overwhelming spread of

the disease.

Figure 4 explores how the susceptible population changes over 10 months depending on the rate at which recovered individuals

relapse and return to the susceptible group (denoted by the parameter ρ).

With an initial value of 50,000, the susceptible population increases dramatically when the relapse rate is high. At a full

relapse rate (ρ = 1), where all recovered individuals become susceptible again, the susceptible population grows to over 300,000

by the end of the 10-month period. This sharp rise indicates that continuous reinfection significantly fuels the pool of susceptible

individuals.

As ρ decreases to 0.75, the increase in susceptibility slows, with the population reaching about 225,000. When the relapse

rate is further reduced to 0.5 (i.e., only half of the recovered individuals become susceptible again), the susceptible population

drops to below 170,000. This shows that reducing the likelihood of relapse significantly limits the size of the susceptible group

and, by extension, the potential for new infections.

In the scenario where there is no relapse at all (ρ = 0), the susceptible population either remains constant or declines slightly

over time due to other natural dynamics in the model. This suggests that preventing relapse plays a crucial role in maintaining

control over disease spread.

Figure 5 illustrates how the recovery population evolves over time under different values of the relapse rate ρ, which represents

the proportion of recovered individuals who lose immunity and return to the susceptible class.

The simulation begins with an initial recovery population of just 155. When the relapse rate is at its maximum (ρ = 1), the

recovery population grows quickly, peaking at around 3,000, but then begins to decline within the 10-month period. This drop

reflects the constant movement of individuals out of the recovered class and back into susceptibility.

As the relapse rate is reduced to ρ = 0.75, the recovery population reaches a higher peak of about 4,000 before declining to

around 3,000. When the relapse rate drops further to ρ = 0.5, the number of recovered individuals rises more steadily, reaching

approximately 6,000suggesting that fewer individuals are leaving the recovered class, allowing the group to grow.

In the scenario where there is no relapse at all (ρ = 0), the recovery population continues to rise throughout the 10-month

period. This sustained increase is due to the continuous recruitment of individuals from other compartments (such as the infected

class) into the recovered class, without any loss back to susceptibility.

10. Conclusion

The study demonstrates that the vaccination control rate, represented by α, significantly influences the dynamics of COVID-19

vaccination on disease susceptibility and recovery within a population. The findings reveal an inverse relationship between the

vaccination control rate and the number of susceptible individuals, implying that higher vaccination coverage with a controlled

α reduces the population’s vulnerability to infection. Moreover, effective vaccination strategies contribute to an increase in the

number of recovered individuals, highlighting the potential of vaccination to enhance overall immunity and expedite the recovery

process.

However, the study also points to the challenge of relapse among recovered individuals, which can diminish immunity over

time and potentially lead to increased susceptibility. Therefore, addressing waning immunity is crucial. Future research should

focus on integrating booster vaccination campaigns and investigating the long-term efficacy of vaccines in mitigating relapse

risks. These efforts could improve control of disease outbreaks and help sustain low transmission rates.
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