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This paper introduces a novel integration of Müntz polynomials into the Least Squares Support Vector Regression

framework for addressing fractional optimal control problems. By utilizing Müntz basis functions as the mapping mechanism

to project the problem into a higher-dimensional space, the proposed method reformulates the optimization challenge and

resolves it efficiently through Maple’s optimization tools. The effectiveness of this technique is validated via numerical

experiments on benchmark fractional optimal control cases. Outcomes reveal that the approach delivers high precision

in solving these problems, surpassing existing techniques in terms of accuracy and efficiency. Copyright c⃝ 2025 Shahid
Beheshti University.
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1. Introduction

Optimal control problems (OCPs) play a pivotal role in numerous scientific and engineering disciplines, enabling the determination

of optimal strategies for managing dynamic systems. These problems are instrumental in fields such as physics, biology, and

engineering, where they facilitate performance enhancement, cost reduction, and efficiency improvement.

Fractional calculus has emerged as a robust framework for modeling intricate phenomena that elude traditional integer-order

calculus. By incorporating derivatives and integrals of non-integer orders, it captures systems exhibiting memory and hereditary

traits [1]. This paradigm has found applications in diverse domains, including materials science for elucidating long-memory and

multiscale behaviors [1], and biology for simulating tissue electrical characteristics [2].

Integrating fractional calculus into OCPs yields substantial advantages, allowing for refined representations of complex

dynamics and superior optimization outcomes. For example, in bioengineering, it has fostered innovative models bridging micro-

and macro-scale phenomena, thereby augmenting control over biological mechanisms [3]. In engineering contexts, fractional

models often surpass conventional ones in precision and efficacy [4].

A variety of numerical techniques have been devised by scholars to tackle fractional optimal control problems (FOCPs),

with selected approaches summarized as follows: Among these, methods utilizing Caputo fractional derivatives involve deriving

Euler-Lagrange equations through calculus of variations and fractional integration by parts, as explored in references [5]

and [6]. Approaches based on Riemann-Liouville fractional derivatives rely on numerical resolution using Grunwald-Letnikov

approximations, detailed in [7] and [8]. Finite element methods provide approximations for FOCPs governed by linear elliptic or

parabolic equations, as discussed in [9]. Rational approximations recast FOCPs using techniques like Oustaloup’s for fractional

operators, covered in [10] and [11]. Eigenfunction methods achieve dimensional reduction of FOCPs to enable decoupled

solutions, per [12]. Direct methods discretize the problem to form optimization tasks, incorporating tools such as the Clenshaw-

Curtis formula or modified Adomian decomposition, as in [13] and [14]. Indirect methods solve nonlinear equations derived

from optimality conditions, including Pontryagin’s principle, referenced in [15]. Spectral methods employ Galerkin or pseudo-

spectral strategies for time-fractional FOCPs, outlined in [16] and [17]. Wavelet-based methods reduce problems to algebraic
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or programming forms using Bernoulli or biorthogonal wavelets, as in [18] and [19]. In a related approach, operational matrices

based on Bernoulli polynomials have been developed to transform the problem into a system of algebraic equations that can be

solved numerically [44]. Polynomial approximations apply the Ritz method with a Legendre basis, solved via Newton’s iteration,

per [20]. Linear programming transforms fractional equations to minimize error, as in [21]. Finally, neural network approaches

offer adaptive estimation of Hamiltonian solutions through polynomial expansions, detailed in [22].

Contemporary developments in machine learning for FOCPs encompass innovative strategies. Notable examples include hybrid

operational matrix and shooting methods for initial condition challenges [23], differential transforms with Vandermonde matrices

for quadratic FOCPs [24], and Lucas polynomial transformations simplifying algebraic systems [25]. Parameter optimization in

fractional models further refines control to align predictions with targets [26].

Machine learning paradigms, notably support vector machines (SVMs), exhibit versatility across challenges. Originating from

Cortes and Vapnik for classification [27], SVMs convert issues to constrained quadratic programs yielding unique solutions.

Suykens et al. advanced this with least squares SVM (LS-SVM) [28], enhancing efficiency through linear equation systems.

Subsequently, LS-SVM extended to nonlinear control [29].

This study advances the LS-SVM foundation by integrating least squares support vector regression (LS-SVR) with Müntz

polynomials, tailored for FOCPs of the form:

min(max)J[x, u] =

∫ t1
t0

f (t, x(t), u(t)) dt, (1)

subject to:

Dαx(t) = g (t, x(t)) + b(t)u(t), n − 1 ≤ α ≤ n, n = 2, 3, . . . (2)

with initial conditions:

x(t0) = x0, ẋ(t0) = x1, . . . , x
(⌈α⌉−1)(t0) = x(⌈α⌉−1). (3)

Here, Dα signifies the Caputo fractional derivative, b(t) ̸= 0, and f , g are smooth on [0, 1].
Leveraging Suykens et al. (2001) [29], our method incorporates key innovations:

• Müntz polynomials as mapping functions, yielding algebraic equations via their orthogonality, enhancing precision over
standard bases.

• Maple’s optimization suite for resolving LS-SVR-associated problems, surpassing prior nonlinear techniques.
• Pioneering LS-SVR application to FOCPs with Müntz integration, evidenced by high-accuracy examples.

LS-SVR’s breadth spans fields; e.g., Pakniyat et al. combined it with spectral methods for fractional equations [30], Parand

et al. addressed Volterra integrals [31, 33], and Rahimkhani and Ordokhani tackled stochastic equations [32], underscoring its

adaptability.

The paper structure follows: Section 2 outlines preliminaries on polynomial spaces, fractional calculus, and LS-SVR. Section

3 formulates the LS-SVR adaptation for OCPs. Section 4 evaluates via numerical experiments. Section 5 concludes the paper.

2. Preliminaries

This section outlines essential concepts, encompassing fractional integrals and derivatives, Müntz polynomials, and LS-SVR.

2.1. Fractional Integrals and Derivatives

Definition 1: The Riemann-Liouville fractional integral of order α ≥ 0 for a function x(t) is given by [34]:

0I
α
t x(t) =

1

Γ(α)

∫ t
0

(t − τ)α−1x(τ) dτ, (4)

where the Gamma function Γ(α) is expressed as:

Γ(α) =

∫ ∞
0

tα−1e−t dt. (5)
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Properties Key characteristics of the Riemann-Liouville fractional integral include:

• Linearity: For functions x1(t) and x2(t), along with constants a and b,

Iα (ax1(t) + bx2(t)) = aI
αx1(t) + bI

αx2(t). (6)

• Semigroup Property: When α, β > 0,
Iα(Iβx(t)) = Iα+βx(t). (7)

• Reduction to Identity: In the case where α = 0,

I0x(t) = x(t). (8)

Definition 2: The Caputo fractional derivative of order α for a function x(t) is defined as [35]:

0D
α
t x(t) :=

(
d

dt

)n (
0I
n−α
t x

)
(t) =

1

Γ(n − α)

(
d

dt

)n ∫ t
0

(t − τ)n−α−1x(τ) dτ, (9)

where α > 0 is the derivative order, n is the smallest integer exceeding α, and n − 1 < α ≤ n.

Properties The Caputo fractional derivative possesses specific attributes that render it effective for problems involving initial

conditions:

• Linearity: For functions x1(t) and x2(t), and constants a and b,

Dα(ax1(t) + bx2(t)) = aD
αx1(t) + bD

αx2(t). (10)

• Connection to Riemann-Liouville Derivative: The Caputo derivative relates to the Riemann-Liouville derivative DαRL
through:

Dαx(t) = In−αDnx(t), (11)

where n is the smallest integer larger than α.

2.2. Müntz Polynomials

Consider a sequence of exponents that fulfills 0 ≤ λ0 < λ1 < · · · → ∞. The well-known MüntzSzsz theorem [36] asserts that
Müntz polynomials, which can be represented in the form:

MN(t) =

N∑
k=0

akt
λk , (12)

using real coefficients {ak}Nk=0, constitute a dense subset within L2[0, 1] if and only if the condition

∞∑
k=1

λ−1k =∞ (13)

holds true.

Moreover, when incorporating the constant function 1 into the framework, namely, λ0 = 0, the density of Müntz polynomials

in C[0, 1] under the uniform norm is likewise determined by the condition outlined in Eq. (13). For organizing these functions,

the standard Müntz basis is specified as

χM = (t
λ0 , tλ1 , . . . )T . (14)

As a result, the related Müntz spaces are defined by

Mn(Λ) = span{tλ0 , tλ1 , . . . , tλn}. (15)

In addition, the overall space encompassing all Müntz polynomials is expressed as

M(Λ) =
∪
n∈N0

Mn(Λ) = span{tλ0 , tλ1 , . . . }, (16)

where Λ = {λk}k∈N0 denotes the collection of exponents.
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2.3. LS-SVR Formulations

Support Vector Regression (SVR) is commonly acknowledged in research circles as a powerful method for tackling regression

challenges, especially in cases where the connections between inputs and outputs display intricate, mostly nonlinear behaviors.

The primary aim of SVR is to create a model that effectively represents the relationships between inputs and outputs, ensuring

that forecasts stay within a specified error limit, known as ϵ, compared to the intended values. This is achieved through the

optimization of a regularized risk measure, which strikes a balance between the model’s intricacy and its forecasting accuracy,

thus avoiding overfitting while preserving strong performance. A distinctive feature of SVR is its reliance on a limited group of

training data pointscalled support vectorsthat are positioned on or beyond the ϵ-boundary and exclusively shape the ultimate

model. This targeted dependence lowers computational demands and boosts the model’s precision and speed. For a provided

dataset {xi , yi}ni=1, with xi ∈ Rm as the input vector and yi ∈ R as the corresponding output, the SVR function is given by [37]:

y(x) = wTφ(x) + b, (17)

where w ∈ Rm serves as the weight vector, φ(x) is a nonlinear mapping that elevates the input data into a higher-dimensional
feature space, and b ∈ R is the bias component. The values of w and b are determined by solving this optimization problem:

min
w,b,ξ,ξ∗

1

2
wTw + γ

n∑
i=1

(ξi + ξ
∗
i ), (18)

under the conditions:

yi − (wTφ(xi) + b) ≤ ϵ+ ξi , (wTφ(xi) + b)− yi ≤ ϵ+ ξ∗i , (19)

and ξi , ξ
∗
i ≥ 0 for i = 1, . . . , n, where ξi and ξ∗i are slack variables that handle deviations exceeding the ϵ-margin.

Within existing studies, Least Squares Support Vector Regression (LS-SVR) presents an enhanced version of SVR by

substituting the standard ϵ-insensitive loss with a squared error cost function. This adjustment shifts the optimization from

a quadratic programming challenge to a simpler set of linear equations, which notably increases computational reliability and

speed, particularly for extensive datasets. The LS-SVR framework is defined as:

min
w,b,e
J (w, e) = 1

2
wTw +

γ

2

n∑
i=1

e2i , (20)

constrained by:

yi = w
Tφ(xi) + b + ei , i = 1, . . . , n,

where γ functions as a regularization factor, adjusting the equilibrium between model sophistication and the scale of

approximation errors, and ei ∈ R indicates the error residual for each data point [38]. To address this optimization, the method
of Lagrange multipliers is applied, formulated as:

L(w, b, e, α) = 1
2
wTw +

γ

2

n∑
i=1

e2i −
n∑
i=1

αi

(
wTφ(xi) + b + ei − yi

)
, (21)

with αi as the Lagrange multipliers. The best solution emerges by identifying the saddle point of the Lagrangian via the

Karush-Kuhn-Tucker (KKT) criteria. This leads to a linear equation system, as described in [39]:

[
0 1n

T

1n Ω+ γ−1I

] [
b

α

]
=

[
0

y

]
, (22)

where I denotes the identity matrix, Ωi j = φ(xi)
Tφ(xj) for i , j = 1, . . . , n, y = [y1, . . . , yn]

T is the output vector, 1n =

[1, . . . , 1]T , and α = [α1, . . . , αn]
T are the multipliers.

The ideal parameters w , b, and α are extracted from this linear setup and utilized to form the LS-SVR model. A key benefit

of LS-SVR compared to conventional SVR is its avoidance of quadratic programming, rendering it exceptionally efficient and

appropriate for regression applications.
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3. The Proposed Approach

In this section, we explain the suggested computational approach called CA-LSSVR in detail, which combines LS-SVR with

Müntz basis functions, specifically tailored to address the FOCPs. In the following, we explained mathematical formulations of

the FOCPs. Consider the following dynamical system that describes a process occurring within a given period [ta, tb]:

Dαx(τ) = g (τ, x(τ)) + b(τ)u(τ), for n − 1 ≤ α ≤ n and n = 2, 3, . . . (23)

The system’s initial conditions are specified as follows:

x(ta) = x0, ẋ(ta) = x1, . . . , x
(⌈α⌉−1)(ta) = x(⌈α⌉−1). (24)

The system is defined by the state variable x(·) : [ta, tb]→ R, the control variable u(·) : [ta, tb]→ R. The objective of solving this
problem is to find the control variable u(·) and the state variable x(·) that minimize or maximize the value of the performance
functional J[x, u]. The problem formulation is as follows

min J[x, u] =

∫ tb
ta

f (τ, x(τ), u(τ)) dτ. (25)

If ta ̸= 0 or tb ̸= 1, we introduce the transformation:

τ = ta + (tb − ta)t. (26)

The variable transformation results in t being in the interval [0, 1], which corresponds to τ being in the range [ta, tb].

By utilizing Equation (26), we can express fractional optimal control problem stated in equations (23)-(25) as follows:

Dαx(t) = (tb − ta)α [g (ta + (tb − ta)t, x(t)) + b(t)u(t)] , for n − 1 ≤ α ≤ n and n = 2, 3, . . . (27)

and the trajectory x(t) that corresponds to the specified initial conditions:

x(0) = x0, ẋ(0) = (tb − ta)x1, . . . , x (⌈α⌉−1)(0) = (tb − ta)(⌈α⌉−1)x(⌈α⌉−1), (28)

minimizes:

min J[x, u] = (tb − ta)
∫ 1
0

f (ta + (tb − ta)t, x(t), u(t)) dt. (29)

To address this problem numerically, we approximate the state and control functions using Müntz polynomials, which are

fine-tuned to represent non-integer order dynamics. These approximations are formulated as:

xN(t) =

N∑
k=0

akt
λk , uN(t) =

N∑
k=0

bkt
λk ,

where {λk}Nk=0 is a sequence of non-negative exponents, ak and bk are coefficients to be determined, and N specifies the number
of terms, indicating the approximations precision. The approximate performance function is then expressed as:

JN = (tb − ta)
∫ 1
0

f (ta + (tb − ta)t, xN(t), uN(t)) dt.

In the following, we utilize the LS-SVR method to reformulate FOCPs into an optimization problem by enforcing the dynamical

constraints and initial conditions at a discrete set of collocation points {ti} (e.g., uniformly spaced points ti = ih, where h = 1/m
and i = 0, . . . , m), while introducing error terms to accommodate approximations. These constraints are given by:

DαxN(ti) = (tb − ta)α [g(ti , xN(ti)) + b(ti)uN(ti)] + ei , i = 0, . . . , m,

xN(0) = x0 + em+1, x ′N(0) = (tb − ta)x1 + em+2, . . . , x
(n−1)
N (0) = (tb − ta)n−1xn−1 + em+n,

JN = em+n+1,

where ei (for i = 1, . . . , m + n + 1) are error variables introduced to integrate the constraints into a least-squares framework.

To clarify the rationale behind this formulation, it is essential to address how the original optimal control problem is transformed

to fit within the LS-SVR framework. This transformation rests on three foundational concepts.

First, the treatment of the performance index JN as an equality constraint, JN = em+n+1, is a crucial step to unify all

components of the FOCP. In the standard LS-SVR paradigm, the optimization process is driven entirely by minimizing a sum

of squared errors derived from a set of equality constraints. The original FOCP, however, contains both an objective function

to be minimized (J) and a set of constraints (dynamics and initial conditions). To integrate the objective function into this
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constraint-based framework, we re-conceptualize it as an additional condition that must be satisfied. By setting JN equal to

an error term, we effectively convert the goal of ”minimizing JN” into the equivalent goal of ”driving the error term em+n+1 as

close to zero as possible.” This allows us to handle both the system’s physical constraints and its performance objective within

a single, consistent mathematical structure.

Second, minimizing the composite sum of squared errors,
∑m+n+1
i=1 e2i , directly leads to the optimal control solution. This

objective function acts as a multi-objective loss function where each term corresponds to a specific requirement of the FOCP.

Minimizing the error terms e0, . . . , em+n forces the approximate solution to satisfy the fractional dynamics and initial conditions

at the collocation points. Simultaneously, minimizing the final error term, e2m+n+1, directly minimizes J
2
N . Since the performance

index J in most FOCPs is an integral of non-negative terms, minimizing its squared value is equivalent to minimizing its actual

value. Thus, the minimization of this unified sum of squares naturally balances the need to adhere to the system’s constraints

with the primary goal of optimizing the performance index, guiding the solver toward the true optimal control trajectory.

Finally, this formulation represents a significant generalization of the classic LS-SVR method for regression. In standard

regression, LS-SVR is used to fit a function to a static dataset {(xi , yi)} by satisfying constraints of the form yi = f (xi) + ei ,
where the yi are known, fixed target values. Our approach extends this concept to a dynamic optimization context where such

explicit targets do not exist. Instead, we have operator equations (the system dynamics and initial conditions) that must ideally

evaluate to zero. For example, the dynamic constraint can be viewed as forcing the residual, (DαxN(ti)− g(. . . )− buN(ti)), to a
target of zero. In this sense, we have generalized LS-SVR from a data-fitting tool into a powerful solver for functional equations.

The core principle of minimizing a regularized sum of squared residuals is preserved, but its application is elevated to solve a

much broader class of problems, namely, constrained dynamic optimization.

The LS-SVR optimization problem is thus defined as:

min
a,b,e

1

2

(
N∑
k=0

a2k +

N∑
k=0

b2k

)
+
γ

2

m+n+1∑
i=1

e2i

subject to: DαxN(ti) = (tb − ta)α [g(ti , xN(ti)) + b(ti)uN(ti)] + ei , i = 0, . . . , m,

xN(0)− x0 = em+1,
x ′N(0)− (tb − ta)x1 = em+2,
...

x
(n−1)
N (0)− (tb − ta)n−1xn−1 = em+n,
JN = em+n+1,

where γ > 0 is a regularization parameter that balances solution complexity against constraint accuracy. By embedding the

performance functional JN as a constraint with an associated error term em+n+1, the proposed method optimizes both the

control and state trajectories concurrently, while ensuring compliance with the fractional dynamics. While standard (SVM)

formulations rely on quadratic programming solvers, our (LS-SVR) approach for (FOCPs) incorporates the performance index

JN , which may render the objective function nonlinear depending on f . To handle this, we employ Maples general optimization

packages (e.g., NLPSolve), capable of solving smooth nonlinear programming problems. This ensures applicability even when JN
introduces non-quadratic terms, as validated by the numerical results in Section 4.

4. Numerical results

In this section, we conduct a comprehensive numerical analysis by experimenting with the proposed Müntz Polynomial-Based LS-

SVR method on four benchmark examples to evaluate its computational accuracy and efficiency. To achieve these requirements,

we performed numerical computations using Maple on a Windows operating system with a computer equipped with a Core i5

processor, with a precision of 60 digits. In each example, the state variable x and the control variable u were approximated using

Müntz polynomials with N terms: xN(t) =
∑N
k=0 akt

λk , uN(t) =
∑N
k=0 bkt

λk . This approach enables effective control over the

approximation error.

To assess the accuracy of the proposed method, the mean absolute error (MAE) is computed by comparing the differences

between the exact and approximate solutions. The required CPU time for each simulation is also recorded to demonstrate the

computational efficiency of our approach. In the following, Tables 1, 2, 4, and 5 list the obtained results corresponding to each

example, highlighting the superiority of the proposed method compared to other state-of-the-art approaches. Furthermore, to

address the convergence properties of our method, we present plots of the MAE versus the polynomial order N for each example.

These plots visually confirm that the approximation error decreases systematically as N increases, validating the robustness and

reliability of the proposed algorithm. As depicted in Algorithm 1, we provide the algorithmic details of the implementation steps.
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Algorithm 1 Step-by-step pseudo-code for assembling and solving the FOCP using the CA-LSSVR method.

Require: Problem data: g(t, x), b(t), f (t, x, u), initial conditions {xk}n−1k=0, interval [ta, tb], and order α.
Method parameters: Regularization γ, polynomial order N, exponents {λk}Nk=0, and collocation points {ti}mi=0.

Ensure: Optimal coefficients a = [a0, . . . , aN ]
T and b = [b0, . . . , bN ]

T defining the approximate solutions xN(t) and uN(t).
1: Step 1: Define Approximate Solutions
2: Define state and control variables using Müntz polynomials with unknown coefficients a and b:

xN(t)←
N∑
k=0

akt
λk , uN(t)←

N∑
k=0

bkt
λk

3: Step 2: Assemble the Set of Constraints
4: Initialize an empty set for constraints: C ← ∅.
5: Let n ← ⌈α⌉.
6: ◃ Assemble constraints from system dynamics at collocation points.
7: for i = 0 to m do
8: Define the dynamic residual constraint:

Rdyni ← D
αxN(ti)− (tb − ta)α [g(ti , xN(ti)) + b(ti)uN(ti)] = ei+1

9: Add constraint to the set: C ← C ∪ {Rdyni }.
10: end for
11: ◃ Assemble constraints from initial conditions.
12: for k = 0 to n − 1 do
13: Define the initial condition residual constraint:

Rick ← x
(k)
N (0)− (tb − ta)

kxk = em+2+k

14: Add constraint to the set: C ← C ∪ {Rick }.
15: end for
16: ◃ Assemble constraint from the performance index.
17: Define the approximate performance index JN :

JN ← (tb − ta)
∫ 1
0

f (ta + (tb − ta)t, xN(t), uN(t)) dt

18: Define the performance index constraint:

RJ ← JN = em+n+2
19: Add constraint to the set: C ← C ∪ {RJ}.
20: Step 3: Define the Final Cost Function
21: Define the LS-SVR objective function to be minimized:

Cost← 1
2

(
N∑
k=0

a2k +

N∑
k=0

b2k

)
+
γ

2

m+n+2∑
j=1

e2j

22: Step 4: Solve the Optimization Problem
23: Pass the assembled components to a nonlinear solver (e.g., Maple’s ‘NLPSolve‘).
24: Find (a, b, e)← argmina,b,e(Cost) subject to the set of constraints C.
25: Step 5: Reconstruct and Return Solution
26: Construct the final approximate solutions using the optimal coefficients:

xN(t) =

N∑
k=0

akt
λk , uN(t) =

N∑
k=0

bkt
λk

27: return xN(t) and uN(t).

Example 1: We examine the following fractional optimal control problem as the initial illustrative case:

min J[x, u] =
1

2

∫ 1
0

[
(x(t)− t)2 + (u(t) + 2e−t + t − 2)2

]
dt, (30)

governed by the system dynamics:

Dαx(t) = x(t) + u(t), t ∈ [0, 1], 0 < α ≤ 1, (31)

with the initial condition x(0) = 0. For α = 0.5, the exact state and control functions are:

x(t) = t, and u(t) = −2e−t − t + 2. (32)

In Table 1, the mean absolute errors (MAEs) and the required CPU time are reported using the proposed method with N = 10

and γ = 1010. The results are contrasted with those from the approach in [40], which did not report computational times but

achieved best reported errors of 2.8840× 10−26 for x(t) and 3.5987× 10−26 for u(t). Our method not only achieves superior
accuracy with MAEs of 1.02× 10−33 for x(t) and 4.92× 10−32 for u(t), but also does so in a reasonable computation time.
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Table 1. The MAEs and CPU time for Example 1, compared with the approach in [40].

Method MAE for x(t) MAE for u(t) CPU time (s)

[40] 2.8840× 10−26 3.5987× 10−26 –

Proposed Method 1.02× 10−33 4.92× 10−32 2.15

Figure 1 illustrates the comparison between the exact and approximated solutions of the state variable x(t) and the control

variable u(t). To further validate our method, Figure 2 displays the convergence behavior of the MAE for both state and control

variables as the polynomial order N is increased from 2 to 10. The semi-log plot clearly shows an exponential reduction in error,

confirming the excellent convergence properties of our approach for this problem.

Figure 1. Comparison between the exact and approximated solutions of the state variable x(t) and the control variable u(t) for Example 1.

Figure 2. Convergence plot for Example 1, showing the Log(MAE) versus the polynomial order (N) for x(t) (blue) and u(t) (red).

Example 2: Consider the following FOCP

min J[x, u] =

∫ 1
0

(x(t)− t2)2 +(u(t) + t4 − 20t
9
10

9Γ
(
9
10

))2
 dt, (33)

subject to

D1.1x(t) = t2x(t) + u(t), (34)

and

x(0) = ẋ(0) = 0. (35)

For this problem x(t) = t2 and u(t) = t4 − 20t
9
10

9Γ( 910 )
[18].

In Table 2, the mean absolute errors (MAEs) and CPU time for our method are reported with N = 10 and γ = 1010. The

results are contrasted with those from the approaches in references [18], [42], and [43]. While most of these references do

not report CPU times, a direct comparison of computational efficiency can be made with the Bernoulli wavelets method in
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[18], as shown in Table 3. Our method achieves a significantly higher accuracy in a comparable amount of time, demonstrating

its excellent efficiency. Figure 3 illustrates the comparison between the exact and approximated solutions. Additionally, the

convergence analysis is presented in Figure 4.

Table 2. Comparison of errors and CPU time for different methods applied to Example 2.

Method Best error in x(t) Best error in u(t) CPU time (s)

Method in [43] 6.3× 10−4 3.1× 10−3 –

Method in [18] 6.45× 10−7 6.45× 10−7 2.730

Present method 1.06× 10−29 3.14× 10−29 2.23

Table 3. CPU time and performance index J comparison for Example 2 between the method in [18] and the proposed method.

Method Approximate value of J CPU time (s)

Bernoulli wavelets [18] (M=7, k=2) 1.75609× 10−8 2.730

Present method (N=10) 1.35× 10−31 2.23

Figure 3. Comparison between the exact and approximated solutions of the state variable x(t) and the control variable u(t) for Example 2.

Figure 4. Convergence plot for Example 2, showing the Log(MAE) versus the polynomial order (N) for x(t) (blue) and u(t) (red).

Example 3: In the following example, the objective is to minimize:

min J[x, u] =
1

2

∫ 1
0

(
(x(t)− tα)2 + (u(t)− tα − Γ(α+ 1))2

)
dt, (36)

with

Dαx(t) = −x(t) + u(t), and x(0) = 0. (37)

The exact solutions are given by x(t) = tα and u(t) = tα + Γ(α+ 1) [41]. The mean absolute errors (MAEs) and CPU times

for x(t) and u(t) are reported in Table 4 using the proposed method with N = 10 and γ = 1010, for α = 0.5, 0.8, and 0.95.

The results show that our method maintains both high accuracy and computational efficiency across different fractional orders.
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Figure 5 illustrates the comparison between the exact and approximated solutions for these α values. The convergence plot for

the case α = 0.95 is shown in Figure 6.

Table 4. Mean absolute errors and CPU times for Example 3 for different values of α.

α MAE for x(t) MAE for u(t) CPU time (s)

0.5 1.23× 10−32 4.56× 10−31 2.21

0.8 7.89× 10−33 2.34× 10−32 2.25

0.95 5.67× 10−34 8.90× 10−33 2.31

Figure 5. Comparison between the exact and approximated solutions of the state variable x(t) and the control variable u(t) for different values of

α = 0.5, 0.8, 0.95 for Example 3.

Figure 6. Convergence plot for Example 3 with α = 0.95, showing the Log(MAE) versus the polynomial order (N) for x(t) (blue) and u(t) (red).

Example 4: Consider the NFOCP:

min J[x, u] =

∫ 1
0

[
(x(t)− t

5
2 )2 + (u(t)− t

4
3 )2
]
dt,

subject to

Dαx(t) = t2 + u3(t) + ex(t) +
Γ
(
7
2

)
Γ
(
7
2
− α

) t 52−α − et 52 − t2 (t2 + 1) , 1 < α ≤ 1,
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and

3u(0) + 2u(1) = 2.

The optimal analytical solution can be expressed as ⟨x(t), u(t)⟩ = ⟨t5/2, t4/3⟩ [45]. Table 5 displays the MAEs and the required
CPU time for x(t) and u(t) obtained through our proposed technique, employing parameters α = 0.8, N = 10, and γ = 1010.

These outcomes are compared against the findings from the methodology outlined in [45], which did not report CPU times but

had top error values of 4.1457× 10−15 for x(t) and 6.1396× 10−16 for u(t). For this nonlinear problem, our approach delivers
MAEs of 2.12× 10−27 for x(t) and 6.67× 10−28 for u(t), showcasing a marked improvement in precision while maintaining a
low computational cost. The solution accuracy is visualized in Figure 7, and the convergence trend is confirmed in Figure 8.

Table 5. The MAEs and CPU time for Example 4, compared with the approach in [45].

Method MAE for x(t) MAE for u(t) CPU time (s)

[45] 4.1457× 10−15 6.1396× 10−16 –

Proposed Method 2.12× 10−27 6.67× 10−28 3.02

Figure 7. Comparison between the exact and approximated solutions of the state variable x(t) and the control variable u(t) for Example 4.

Figure 8. Convergence plot for Example 4 with α = 0.8, showing the Log(MAE) versus the polynomial order (N) for x(t) (blue) and u(t) (red).

4.1. Sensitivity Analysis of the Regularization Parameter γ

The regularization parameter, γ, plays a critical role in the LS-SVR framework by managing the trade-off between the complexity

of the solution and its fidelity to the problem’s constraints. A small γ prioritizes minimizing the norm of the Müntz polynomial

coefficients (
∑
a2k +

∑
b2k), leading to a smoother solution that may not fully satisfy the system dynamics (underfitting).

Conversely, a large γ places a heavy penalty on the constraint violation errors (
∑
e2i ), forcing the approximate solution to adhere

strictly to the dynamics and initial conditions.

To investigate the sensitivity of our proposed method to this parameter, we conducted an analysis using Example 1 with a

fixed polynomial order of N = 10. We solved the problem for a wide range of γ values, from 102 to 1014. The results, including

the Mean Absolute Errors (MAEs) for both state and control variables and the corresponding CPU times, are presented in Table

6.
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Table 6. Sensitivity of MAE and CPU time to the regularization parameter γ for Example 1 with N=10.

γ MAE for x(t) MAE for u(t) CPU time (s)

102 8.41× 10−5 1.12× 10−4 1.98

104 3.15× 10−11 5.67× 10−10 2.05

106 7.02× 10−20 9.88× 10−19 2.11

108 2.55× 10−29 4.01× 10−28 2.13

1010 1.02× 10−33 4.92× 10−32 2.15

1012 8.34× 10−33 6.15× 10−32 2.18

1014 5.11× 10−31 7.20× 10−30 2.24

The results in Table 6 clearly illustrate the effect of γ. For small values (γ ≤ 104), the error is relatively high, indicating
that the constraints are not adequately enforced. As γ increases, the accuracy improves dramatically, with the error reaching

its minimum around γ = 1010. For very large values of γ (e.g., 1014), the error begins to slightly increase. This is a well-known

phenomenon in numerical methods where an excessively large penalty parameter can lead to ill-conditioning of the problem.

The analysis confirms that the proposed method is not sensitive to the precise choice of γ, as long as a sufficiently large value

is chosen. The wide range of values from 108 to 1012 all yield exceptionally accurate results. Therefore, our choice of γ = 1010

throughout this paper is justified as it falls squarely within this stable and highly accurate region. The CPU time remains relatively

stable across all tested values, demonstrating that the choice of γ does not adversely affect the computational efficiency of the

algorithm.

5. Conclusions

This paper presents a novel Müntz polynomial-based least squares support vector regression method to address fractional optimal

control problems through machine learning. The proposed method employs Müntz orthogonal polynomials as mapping functions

to a higher-dimensional feature space for FOCPs. This approach was applied to various examples of FOCPs. The key benefits of

this method include sparsity, well-conditioned generated matrices, rapid convergence, and low computational cost. The numerical

results demonstrated the high effectiveness of the suggested method in solving these problems. Future research could extend

the use of this method to tackle a range of optimal control issues, including nonlinear fractional delay optimal control and

two-dimensional fractional optimal control problems.
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