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A mathematical modeling evaluating the role
of booster vaccine and Quarantine strategy
as interventions for cholera control

M.K. Kolawolea and S.R. Adebayoa

Cholera remains a global health challenge, especially in regions with inadequate water and healthy sanitation scheme . This

research investigates the effectiveness of booster vaccination and quarantine strategies in controlling cholera outbreaks

using a mathematical model that incorporates key epidemiological factors such as infection rates, recovery rates and waning

immunity. The model also integrates booster vaccination to prolong immunity and quarantine measures to reduce contact

between susceptible and infected individuals. Qualitative analysis of the model in lieu of sensitivity testing, demonstrates

that the combined use of booster vaccination and quarantine significantly lower the basic reproduction number (R0),

effectively for controlling cholera transmission. The Laplace Adomian Decomposition Method (LADM) was used to solve

the system and numerical simulation which confirm that booster vaccination enhances long-term immunity, while quarantine

measures reduce transmission by limiting contact between infected and susceptible populations. Results provide valuable a

valuable insights that can guide policymakers in developing more effective cholera prevention strategies to reduce disease

incidence and mortality. Copyright c⃝ 2025 Shahid Beheshti University.
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1. Introduction

Cholera is a waterborne disease caused by the bacterium vibrio cholerae, primarily transmitted through the consumption of

contaminated food and water. This pathogen thrives in aquatic environments, especially in regions lacking adequate sanitation

and clean water supply. The transmission risk escalates considerably during natural disasters such as floods and hurricanes, which

disrupt water and sanitation systems, creating conditions that leads to cholera outbreaks [4, 11]. Whenever unhealthy food or

water is ingested, vibrio cholerae colonizes the small intestine, producing cholera toxin that leads to severe dehydration due to

rapid fluid loss which often result to death if untreated [6]. The rapid spread of cholera in overcrowded and unsanitary conditions

can lead to large-scale epidemics, particularly in vulnerable populations [19].

The impact of cholera extends far beyond immediate health risks, especially in low-resource settings. High mortality rates are

often observed among young children, the elderly, and those with compromised immune systems [20, 3]. The urgent need for

medical intervention during outbreaks frequently overwhelms local healthcare systems [15]. To a measurable extent, mathematical

problem is defined by integral operator which play a crucial role in various disciplines [1]. Moreover, cholera outbreaks disrupt daily

life and economic productivity, leading to socio-economic consequences of loss of life and property, such as reduced workforce

participation and strain on public health resources [12]. The stigma associated with the disease can also lead to social isolation,

further complicating recovery efforts in affected communities [17].

Mathematical modeling has emerged as a crucial tool for understanding cholera transmission dynamics and evaluating the

effectiveness of control measures. Early models by [13] and [7] employed systems of nonlinear differential equations to explore

interactions among susceptible, infected and recovered individuals, as well as environmental reservoirs of vibrio cholerae. These

foundational work paved way for more sophisticated models that incorporate various public health strategies, including vaccination

and sanitation improvement [8, 16]. A mathematical model developed for capturing key cholera dynamics and evaluated for the

a Department of Mathematical Sciences, Osun State University, Osogbo, Nigeria.
∗Correspondence to: M.K. Kolawole. Email: mutairu.kolawole@uniosun.edu.ng

Comput. Math. Comput. Model. Appl. 2025, Vol. 4, Iss. 1, pp. 21–42 Copyright c⃝ 2025 Shahid Beheshti University.



Computational Mathematics and Computer Modeling with Applications M.K. Kolawole and S.R. Adebayo

effectiveness of control strategies such as education, sanitation, treatment and vaccination [9]. The results indicated that,

combining multiple strategies significantly enhances control efficacy compared to single intervention.

Recent studies have expanded on these concepts by exploring the role of public awareness in cholera dynamics. For instance,

as investigated that the impact of awareness program on transmission rates, revealing that increased public awareness could

effectively reduces infection rates. Their work highlight the necessity of incorporating social factors into mathematical models to

better reflect real-world dynamics [21]. Additionally, an applied Artificial Neural Networks (ANNs) to forecast cholera incidence

in Iran based on climate variables which further demonstrated the intricate relationship between environmental factors and

cholera outbreak [18]. Another notable advancement is the development of mathematical model that integrate with physics-

informed techniques which represent a novel and powerful advancement in solving complex problem in excelling at learning

non-linear mappings between high-dimensional spaces. These networks are especially effective in capturing intricate dynamics

and decomposing functions into simpler components, making them ideal for modeling both local and global behaviour in physical

systems of ordinary differential equations [1]

The aim of this study is to develop a comprehensive mathematical model that examines the transmission dynamics of cholera

while considering environmental influences and public health intervention. By synthesizing insights from existing literature and

employing advanced modeling techniques, our research seeks to enhance the understanding of cholera epidemiology and inform

effective strategies for outbreak control. Understanding these dynamics is vital for mitigating the socio-economic impacts of

cholera, particularly in regions at heightened risk for future outbreaks [10, 2].

1.1. Foundational Concepts

In this section, we present key definitions that are relevant to the present research.

Definition 1 The Laplace transform of the derivative function DtW (t) [14, 5] can be expressed as

L [DtW (t)] = sL [W (t)]−W (0),

where s ≥ 0 and Dt denotes the standard derivative operator.

Definition 2 The Adomian polynomials B0, B1, . . . , Bn that facilitate the decomposition of the unknown function W (t),

represented as W (t) = W0 +W1 +W2 + . . .+Wn, are defined by:

Bn =
1

n!

dn

dλn

[
H(t)

n∑
j=0

Wjλ
j

]
λ=0

,

where H(t) is a nonlinear operator and Wj represents the elements of the decomposition.

2. Methodology

2.1. Laplace Adomian Decomposition Technique

This subsection elaborates on the implementation of the Laplace Adomian Decomposition Technique (LADT) for solving a

generalized set of differential equations of integer order, represented as follows:

DtUk(t) = gk(U1, U2, U3, Uk) + hk(U1, U2, U3, Uk), (1)

accompanied by the initial condition:

Uk(0) = ωk , k = 1, 2, 3, ..., r. (2)

In equation (1), DtUk(t) indicates the standard derivative of the unknown functions Uk(t), where k denotes the index of the

terms under consideration. The linear and nonlinear segments of the equation are indicated by gk and hk , respectively. Taking

the Laplace transform of equation (1) yields:

L [DtUk(t)] = L [gk(U1, U2, U3, Uk) + hk(U1, U2, U3, Uk)] . (3)

Utilizing the properties of the Laplace transform, we derive:

sL[Uk(t)]− Uk(0) = L [gk(U1, U2, U3, Uk) + hk(U1, U2, U3, Uk)] . (4)

According to the Adomian decomposition methodology, Uk(t) can be represented as a series of components:

Uk(t) =

∞∑
n=0

Ukn(t), k = 1, 2, 3, ..., r. (5)
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Similarly, the nonlinear terms hk can be decomposed as:

hk(U1, . . . , Uk) =

∞∑
n=0

Akn(t), (6)

where Akn(t) denotes the Adomian polynomials. Substituting equations (5) and (6) into equation (4) yields:

sL
[ ∞∑
n=0

Ukn(t)

]
=
Uk(0)

s
+ sL

[ ∞∑
n=0

gkn(t)

]
+ sL

[ ∞∑
n=0

Akn(t)

]
. (7)

Taking the inverse Laplace transform of equation (7) provides the recurrence relation for the solution:

Uk(n+1)(t) = L−1
(
Uk(0)

s

)
+ L−1

[
sL
[
gk

( ∞∑
n=0

U1n(t), . . . ,

∞∑
n=0

Ukn(t)

)]
+ sL

[ ∞∑
n=0

Akn(t)

]]
. (8)

Simplifying this expression results in:

Uk(n+1)(t) = ck + L−1
[
sL
[
gk

( ∞∑
n=0

U1n(t), . . . ,

∞∑
n=0

Ukn(t)

)]
+ sL

[ ∞∑
n=0

Akn(t)

]]
, (9)

which represents the required recursive formula for solving the non-fractional differential equation using the Laplace Adomian

Decomposition Technique.

2.2. Mathematical model

Figure 1. Schematic diagram of the model

The work of Abdulai et al. (2023) was extended by incorporating a vaccine booster administered in two stages: primary

vaccination (vp) and secondary vaccination (vs), along with a quarantine strategy at Y . This results in a new system of ordinary

differential equations that dynamically represents the transmission of cholera fever while assessing the roles of primary, secondary,

periodic vaccination and immunity losses. The population is subdivided into various epidemiological classes: Susceptible Primary

(SP ), Susceptible Secondary (SC), Primary Vaccination (VP ), Secondary Vaccination (VS), Exposed (E), Infected (I), Recovered

(R) and a bacteria subclass (B). Recruitment into the susceptible population occurs at a rate denoted as Λ, with vaccinations

at different stages occurring at the following rates: infant stage at n, primary stage at v1, secondary stage at v2 and periodic

booster administration at v3. Immunity loss rates are given by ρ1 for the primary stage, ρ2 for the secondary stage, and ρ3 for the

periodic booster. The rates of infectious transmission are represented as follows: q1 for exposure, q2 for infected individuals, and

q3 for bacteria, respectively. Figure 1 gives the schematic diagram of the system of nonlinear differential equations presented in
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equation (10) below.

dSP
dt
= (1− n)Λ− β(q1E + q2I + q3B)− (V1 + µ)SP ,

dVP
dt
= nΛ + V1SP − (v2 + p1 + µ)VP ,

dSC
dt
= (ρ3 + µ)R + ρ1VP + ρ2VS − V3SC −Kβ(q1E + q2I + q3B)SC ,

dVS
dt
= v2VP − (µ+m)VS − ρ2VS + V3SC ,

dE

dt
= β((q1E + q2I + q3B)(S +KSC)− (µ+ Z)E),

dI

dt
= ZE − (Υ1 +Υ2 + µ+ δ1 + µ)I,

dQ

dt
= Υ1I − (τ +Υ3 + δ2 + µ)Q,

dR

dt
= Υ2I + (τ +Υ3)Q+mVS − (µ+ ρ3)R,

dB

dt
= ω + ξ1E + ξ2I − µbB.

(10)

The nomenclature of the model’s components are itemized in Table 1 below.

Table 1. Description of Parameters with Baseline Values

Parameter Description Baseline

Value

Source

SP Susceptible primary population 1723 [2]

SC Susceptible secondary population 28000 [21]

VP Vaccination at primary stage 17621 [1]

VS Vaccination at secondary stage 2200 [3]

E Exposed population 2000 [13, 15]

I Infected population 130 [16]

R Recovered population 1.09 [8, 15]

B Bacteria population 2301 [20]

Λ Human recruitment rate 168 [14]

n Fraction of recruited susceptible-vaccinated 0.670 Estimated

β Transmission rate 0.2713 [1]

q1 Infectiousness from exposed 1.002 [17]

q2 Infectiousness from infected 1.001 [6]

q3 Infectiousness from bacteria 1.01 [4]

ν1 Vaccination rate at primary stage 0.41 [7]

ν2 Vaccination rate at secondary stage 0.423 [19]

ν3 Periodic administration of boosters 0.331 [5, 9]

K Proportion of susceptible 0.026 [14]

ρ1 Immunity loss at primary stage 0.2386 [13]

ρ2 Immunity loss at secondary stage 0.2514 [10]

ρ3 Immunity loss at periodic stage 0.3237 [11]

µ Natural mortality rate 0.0041 Estimated

Z Rate of progression from exposed to infection 0.0000042 [11, 22]

τ Treatment rate 0.75 Estimated

γ Recovery rate 0.776 [1]

δ cholera-induced mortality rate 0.0122 assumed

M Recovery rate from secondary vaccination 0.0956 assumed

µb Rate of bacteria decay 0.0645 [21]

ω Growth rate of bacteria 0.01 [16]

ε1 Rate of bacteria excretion (Exposed) 0.0918 [16]

ε2 Rate of bacteria excretion (Infected) 0.0812 [19]
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3. Model Analysis

In this section, we analyse the basic features of the model

3.1. Positivity and Boundedness of the Solution

In mathematical epidemiology and population dynamics, it is crucial to ensure that all state variables remain positive over

time. Positivity is essential for the biological realism of the model, as negative values may lead to nonsensical interpretations.

Additionally, establishing positivity helps to confirm the model’s well-posedness, indicating that the solution exist, unique and

continuously depend on initial condition.

Γ =
{
SP , SC , VP , VS, E, I, Q,R,B ∈ R9+

}
(11)

The initial conditions are defined as follows:

SP (0) = s(0), SC(0) = s(0), VP (0) = v(0),

VC(0) = v(0), E(0) = e(0), I(0) = i(0),

Q(0) = q(0), R(0) = r0, B(0) = b0 for t > 0.

Theorem 1 For the system defined by the parameters in equation (11), the following properties hold:

1. All state variables remain positive for t > 0.

2. The model is well-posed, meaning solution exist, unique and continuously depend on the initial condition.

sProof

First, consider the equation for SP (t):

dSP
dt
= (1− n)Λ− β(q1E + q2I + q3B)− (V1 + µ)SP .

From this, it can be deduced that:
dSP
dt
≥ (V1 + µ)SP (t).

By separating variables, it is obtained that :
dSP
SP (t)

≥ −(V1 + µ)dt.

Integrating both sides result in: ∫
dSP
SP (t)

≥ −(V1 + µ)
∫
dt.

Thus,

SP (t) ≥ −(V1 + µ)t + c.

This implies:

SP (t) ≥ e−(V1+µ)t+c ≥ SP (0)e−(V1+µ)t+C > 0,

where SP (0) = e
c . Next, it can be analysed that VP (t):

dVP
dt
= nΛ + V1S − (V2 + P1 + µ)VP .

Thus:
dVP
dt
≥ nΛ + V1S − (V2 + P1 + µ)VP .

Using the variable separable method:
dVP
VP (t)

≥ −(V2 + P1 + µ).

Integrating gives: ∫
dVP
dt
≥ −(V2 + P1 + µ)

∫
dt.

This leads to:

VP (t) ≥ e−(V2+µ+P1)t+c ≥ VP (0)e−(V2+µ+P1)t+c > 0.

Lastly, consider SC(t):

dSC
dt
= (ρ3 + µ)R + ρ1VP + ρ2VS − V3SC −Kβ(q1E + q2I + q3B)SC .
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It is obtained that:
dSC
dt
≥ (ρ3 + µ)R + ρ1VP + ρ2VS − V3SC −Kβ(q1E + q2I + q3B)SC .

Separating variables yields:
dSC
SC(t)

≥ −Kβ(q1E + q2I + q3B).

Integrating gives: ∫
dSC
SC(t)

≥ −Kβ(q1E + q2I + q3B)
∫
dt.

Thus, it can be deduced that:

SC(t) ≥ −Kβ(q1E + q2I + q3B)t + c.

This shows that:

SC(t) ≥ S(0)e−Kβ(q1E+q2I+q3B)t+c > 0.

for the exposed population E(t):

dE

dt
= β ((q1E + q2I + q3B)(S +KSC)− (µ+ Z)E)

it can be asserted that:

dE

dt
≥ −(µ+ Z)E(t)

Dividing through by E(t):

dE

E(t)
≥ −(µ+ Z)dt

Integrating yields: ∫
dE

E(t)
≥ −(µ+ Z)

∫
dt

Thus is is resolved that:

E(t) ≥ e(0)e−(µ+Z)t+c > 0

Next, for the infected population I(t):

dI

dt
= ZE − (Υ1 +Υ2 + µ+ δ1)I

This leads us to:

dI

dt
≥ −(Υ1 +Υ2 + µ+ δ1)I

Again, dividing through by I(t):

dI

I(t)
≥ −(Υ1 +Υ2 + µ+ δ1)dt

Integrating gives: ∫
dI

I(t)
≥ −(Υ1 +Υ2 + µ+ δ1)

∫
dt

Thus is is resolved that:

I(t) ≥ i(0)e−(Υ1+Υ2+µ+δ1)t > 0

For the quarantined population Q(t):

dQ

dt
= Υ1I − (τ +Υ3 + δ2 + µ)Q

We derive:

dQ

dt
≥ −(τ +Υ3 + δ2 + µ)Q
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This yields:

dQ

Q(t)
≥ −(τ +Υ3 + δ2 + µ)dt

Integrating result in: ∫
dQ

Q(t)
≥ −(τ +Υ3 + δ2 + µ)

∫
dt

it is resolved that

Q(t) ≥ q(0)e−(τ+Υ3+δ2+µ)t > 0

Next, for the carrier state SC(t):

dSC
dt
= (ρ3 + µ)R + ρ1VP + ρ2VS − V3SC −Kβ(q1E + q2I + q3B)SC

It is derived that:

dSC
dt
≥ −Kβ(q1E + q2I + q3B)SC

This result in:

dSC
SC
≥ −Kβ(q1E + q2I + q3B)dt

Integrating gives: ∫
dSC
SC
≥ −Kβ(q1E + q2I + q3B)

∫
dt

Thus:

SC(t) ≥ sC(0)e−Kβ(q1E+q2I+q3B)t > 0

Finally, for the recovered population R(t):

dR

dt
= Υ2I + (τ +Υ3)Q+mVS − (µ+ ρ3)R

To derive:

dR

dt
≥ −(µ+ ρ3)R(t)

This leads to:

dR

R(t)
≥ −(µ+ ρ3)dt

Integrating gives: ∫
dR

R(t)
≥ −(µ+ ρ3)

∫
dt

It is concluded that:

R(t) ≥ r(0)e−(µ+ρ3)t > 0

Consequently, since all variables in R+9 at equilibrium defined by the model function, represent well-posed mathematical and

epidemiological problems, It is affirmed that the solutions are positively invariant. As a result, all state variables remain positive

for t > 0 and the model is well-posed.
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3.2. Existence and Uniqueness of the Model

To assess the existence and uniqueness of solution for the model, we begin by defining the following functions from equation

(10)

F1 = (1− n)Λ− β(q1E + q2I + q3B)− (V1 + µ)SP ,
F2 = nΛ + V1SP − (v2 + p1 + µ)VP ,
F3 = (ρ3 + µ)R + ρ1VP + ρ2VS − V3SC −Kβ(q1E + q2I + q3B)SC ,
F4 = v2VP − (µ+m)VS − ρ2VS + V3SC ,
F5 = β((q1E + q2I + q3B)(S +KSC)− (µ+ Z)E),
F6 = ZE − (Υ1 +Υ2 + µ+ δ1 + µ)I,
F7 = Υ1I − (τ +Υ3 + δ2 + µ)Q,
F8 = Υ2I + (τ +Υ3)Q+mVS − (µ+ ρ3)R,
F9 = ω + ξ1E + ξ2I − µbB.

(12)

Analysing these functions to establish the existence and uniqueness of the model solutions are given below.

∣∣∣∣∂F1∂S
∣∣∣∣ = V1 + µ, ∣∣∣∣ ∂F1∂SC

∣∣∣∣ = 0, ∣∣∣∣ ∂F1∂VP

∣∣∣∣ = 0,∣∣∣∣∂F1∂VS

∣∣∣∣ = 0, ∣∣∣∣∂F1∂E
∣∣∣∣ = βq1, ∣∣∣∣∂F1∂I

∣∣∣∣ = βq2,∣∣∣∣∂F1∂R
∣∣∣∣ = 0, ∣∣∣∣∂F1∂Q

∣∣∣∣ = 0, ∣∣∣∣∂F1∂B
∣∣∣∣ = βq3,∣∣∣∣ ∂F2∂VP

∣∣∣∣ = V2 + ρ1 + µ, ∣∣∣∣ ∂F2∂SP

∣∣∣∣ = 0, ∣∣∣∣ ∂F2∂SC

∣∣∣∣ = 0,∣∣∣∣∂F2∂VS

∣∣∣∣ = V1, ∣∣∣∣∂F2∂E
∣∣∣∣ = 0, ∣∣∣∣∂F2∂I

∣∣∣∣ = 0,∣∣∣∣∂F2∂Q

∣∣∣∣ = 0, ∣∣∣∣∂F2∂R
∣∣∣∣ = 0, ∣∣∣∣∂F2∂B

∣∣∣∣ = 0,∣∣∣∣ ∂F3∂SP

∣∣∣∣ = 0, ∣∣∣∣ ∂F3∂SC

∣∣∣∣ = V3 +Kβ(q1 + q2 + q3), ∣∣∣∣ ∂F3∂VP

∣∣∣∣ = P1,∣∣∣∣∂F3∂VS

∣∣∣∣ = P2, ∣∣∣∣∂F3∂E
∣∣∣∣ = Kβq1, ∣∣∣∣∂F3∂I

∣∣∣∣ = Kβq2,∣∣∣∣∂F3∂Q

∣∣∣∣ = 0, ∣∣∣∣∂F3∂R
∣∣∣∣ = ρ3 + µ, ∣∣∣∣∂F3∂B

∣∣∣∣ = 0,∣∣∣∣ ∂F4∂SP

∣∣∣∣ = 0, ∣∣∣∣ ∂F4∂SC

∣∣∣∣ = V3, ∣∣∣∣ ∂F4∂VP

∣∣∣∣ = V2,∣∣∣∣∂F4∂VS

∣∣∣∣ = P2, ∣∣∣∣∂F4∂E
∣∣∣∣ = 0, ∣∣∣∣∂F4∂I

∣∣∣∣ = 0,∣∣∣∣∂F4∂Q

∣∣∣∣ = 0, ∣∣∣∣∂F4∂R
∣∣∣∣ = 0, ∣∣∣∣∂F4∂B

∣∣∣∣ = 0,∣∣∣∣ ∂F5∂SP

∣∣∣∣ = β(q1 + q2 + q3 +K), ∣∣∣∣ ∂F5∂SC

∣∣∣∣ = K, ∣∣∣∣ ∂F5∂VP

∣∣∣∣ = 0,∣∣∣∣∂F5∂VS

∣∣∣∣ = 0, ∣∣∣∣∂F5∂E
∣∣∣∣ = βq1 + µ+ z, ∣∣∣∣∂F5∂I

∣∣∣∣ = βq2,∣∣∣∣∂F5∂Q

∣∣∣∣ = 0, ∣∣∣∣∂F5∂R
∣∣∣∣ = 0, ∣∣∣∣∂F5∂B

∣∣∣∣ = βq2,∣∣∣∣ ∂F6∂SP

∣∣∣∣ = 0, ∣∣∣∣ ∂F6∂SC

∣∣∣∣ = 0, ∣∣∣∣ ∂F6∂VP

∣∣∣∣ = 0,∣∣∣∣∂F6∂VS

∣∣∣∣ = 0, ∣∣∣∣∂F6∂E
∣∣∣∣ = Z, ∣∣∣∣∂F6∂I

∣∣∣∣ = Y,∣∣∣∣∂F6∂Q

∣∣∣∣ = 0, ∣∣∣∣∂F6∂B
∣∣∣∣ = 0, ∣∣∣∣∂F6∂R

∣∣∣∣ = 0.
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∣∣∣∣ ∂F6∂SC

∣∣∣∣ = 0, ∣∣∣∣ ∂F6∂VP

∣∣∣∣ = 0, ∣∣∣∣∂F6∂VS

∣∣∣∣ = 0, ∣∣∣∣∂F6∂E
∣∣∣∣ = Z, ∣∣∣∣∂F6∂I

∣∣∣∣ = Y,∣∣∣∣∂F6∂Q

∣∣∣∣ = 0, ∣∣∣∣∂F6∂B
∣∣∣∣ = 0, ∣∣∣∣∂F6∂R

∣∣∣∣ = 0,∣∣∣∣ ∂F7∂SP

∣∣∣∣ = 0, ∣∣∣∣ ∂F7∂VP

∣∣∣∣ = 0, ∣∣∣∣ ∂F7∂SC

∣∣∣∣ = 0, ∣∣∣∣∂F7∂VS

∣∣∣∣ = 0, ∣∣∣∣∂F7∂E
∣∣∣∣ = 0,∣∣∣∣∂F7∂I

∣∣∣∣ = Υ1, ∣∣∣∣∂F7∂Q

∣∣∣∣ = −(τ +Υ3 + δ2 + µ), ∣∣∣∣∂F7∂R
∣∣∣∣ = 0, ∣∣∣∣∂F7∂B

∣∣∣∣ = 0,∣∣∣∣ ∂F8∂SP

∣∣∣∣ = 0, ∣∣∣∣ ∂F8∂VP

∣∣∣∣ = 0, ∣∣∣∣ ∂F8∂SC

∣∣∣∣ = 0, ∣∣∣∣∂F8∂VS

∣∣∣∣ = m, ∣∣∣∣∂F8∂E
∣∣∣∣ = 0,∣∣∣∣∂F8∂I

∣∣∣∣ = Υ2, ∣∣∣∣∂F8∂Q

∣∣∣∣ = τ +Υ3, ∣∣∣∣∂F8∂R
∣∣∣∣ = −(µ+ ρ3), ∣∣∣∣∂F8∂B

∣∣∣∣ = 0,∣∣∣∣ ∂F9∂SP

∣∣∣∣ = 0, ∣∣∣∣ ∂F9∂VP

∣∣∣∣ = 0, ∣∣∣∣ ∂F9∂SC

∣∣∣∣ = 0, ∣∣∣∣∂F9∂VS

∣∣∣∣ = 0, ∣∣∣∣∂F9∂E
∣∣∣∣ = ξ1,∣∣∣∣∂F9∂I

∣∣∣∣ = ξ2, ∣∣∣∣∂F9∂Q

∣∣∣∣ = 0, ∣∣∣∣∂F9∂R
∣∣∣∣ = 0, ∣∣∣∣∂F9∂B

∣∣∣∣ = −µb.
These examination of the computed partial derivatives

∣∣∣ ∂Fi∂xj ∣∣∣ confirms that each function Fi is continuous and differentiable
concerning the state variables SP , SC , VP , VS, E, I, R, Q, and B. These results indicate that the existence and uniqueness of

the solution which affirms a well- defined nature of the system under investigation.

3.3. The disease free equilibrium

The disease free equilibrium is a state where the disease is absent in the population, and the system stabilizes without any

infected individuals.

Let disease free equilibrium be represented by DFE0(Sp0, SC0, VP0, VS0, E0, I0, R0, B0) and equate the system of equation (10) to

zero, substituting Sp = Sp0, Sc = SC0, Vp = Vp0, VS = VS0, E = E0 = 0, I = I0 = 0, R = R0 = 0, B = B0 = 0.

Solving the remaining equations, we have:

(1− n)Λ− β(q1E + q2I + q3B)− (ν1 + µ)SP = 0

(ρ3 + µ)R + ρ1VP + ρ2VS − ν3SC −Kβ(q1E + q2I + q3B)SC = 0 (13)

nΛ + ν1SP − (ν2 + ρ1 + µ)VP = 0

ν2VP − (µ+m)VS − ρ2VS + ν3SC = 0

From the first equation of (13):

(1− n)Λ− β(q1E + q2I + q3B)− (ν1 + µ)SP = 0

(1− n)Λ = (ν1 + µ)SP

SP =
(1− n)Λ
(ν1 + µ)

(14)

From the second equation of (13):

(ρ3 + µ)R + ρ1VP + ρ2VS − ν3SC −Kβ(q1E + q2I + q3B)SC = 0

ρ1VP + ρ2VS − ν3SC = 0

ρ1VP + ρ2VS = ν3SC

SC =
ρ1VP + ρ2VS

ν3
(15)

From the third equation of (13):

nΛ + ν1SP − (ν2 + ρ1 + µ)VP = 0

nΛ + ν1SP = (ν2 + ρ1 + µ)VP

VP =
nΛ + ν1SP
(ν2 + ρ1 + µ)

(16)

From the last equation of (13):

ν2VP − (µ+m)VS − ρ2VS + ν3SC = 0
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ν2VP + ν3SC = (µ+m)VS + ρ2VS

VS =
ν2VP + ν3SC
(µ+m) + ρ2

(17)

E0 = {SP0 , SC0 , VP0 , VS0 , E0, I0, R0, B0} =
{
(1− n)Λ
(ν1 + µ)

,
ρ1VP + ρ2VS

ν3
,
nΛ + ν1SP
(ν2 + ρ1 + µ)

,
ν2VP + ν3SC
(µ+m) + ρ2

, 0, 0, 0, 0

}
(18)

Endemic Equilibrium Analysis

To identify the endemic equilibrium state for the model, we begin by setting each time derivative to zero, reflecting the stable

condition where all variables remain constant over time:

dSP
dt
=
dVP
dt
=
dSC
dt
=
dVS
dt
=
dE

dt
=
dI

dt
=
dQ

dt
=
dR

dt
=
dB

dt
= 0.

Thus, solving for the endemic equilibrium values denoted by S∗P , V
∗
P , S

∗
C , V

∗
S , E

∗, I∗, Q∗, R∗, and B∗ sequentially by making

substitutions where applicable we have:

I∗ =
ZE∗

Υ1 +Υ2 + δ1 + µ
.

Q∗ =
Υ1I

∗

τ +Υ3 + δ2 + µ
.

R∗ =
Υ2I

∗ + (τ +Υ3)Q
∗ +mV ∗S

µ+ ρ3
.

B∗ =
ξ1E

∗ + ξ2I
∗

µb
.

E∗ =
β(q1E

∗ + q2I
∗ + q3B

∗)(S∗P +KS
∗
C)

µ+ Z
.

V ∗S =
V2V

∗
P + V3S

∗
C

µ+m + ρ2
.

S∗C =
(ρ3 + µ)R

∗ + ρ1V
∗
P + ρ2V

∗
S

V3 +Kβ(q1E∗ + q2I∗ + q3B∗)
.

V ∗P =
nΛ + V1S

∗
P

V2 + p1 + µ
.

S∗P =
(1− π)Λ

β(q1E∗ + q2I∗ + q3B∗) + V1 + µ
.

3.4. The Basic Reproduction Number

The basic reproduction number, R0, represents the average number of secondary infections caused by a single infected individual

in a fully susceptible population. It is crucial for assessing the potential spread of an infection. Using the next-generation matrix

method, R0 is calculated by distinguishing between new infections and the transition between stages of infection.

We start by defining the infection matrix F , which captures new infections, and the transition matrix V , representing the

transitions through different stages of infection:

F =


βq1(SP +KSC) βq2(SP +KSC) 0 βq3(SP +KSC)

0 0 0 0

0 0 0 0

0 0 0 0



V =


(µ+ z) 0 0 0

−z (τ + γ + µ+ δ) 0 0

0 −Υ1 (τ +Υ3 + δ2 + µ) 0

−ε1 −ε2 0 µb


The basic reproduction number R0 is then derived as the spectral radius of FV

−1:

30 Copyright c⃝ 2025 Shahid Beheshti University. Comput. Math. Comput. Model. Appl. 2025, Vol. 4, Iss. 1, pp. 21–42



M.K. Kolawole and S.R. Adebayo Computational Mathematics and Computer Modeling with Applications

R0 =
β
(
q1 + q2

z
τ+γ+µ+δ

+ q3
ε2
µb

)
(SP +KSC)

(µ+ z)

Additionally, a related expression captures further details of transmission dynamics:

R0 =
βq1(SP +KSC)(τ +Υ3 + µ+ δ2)µb

(τ +Υ3 + µ+ δ2)
=
βq1

(
(1−n)λ
(V1+µ

+)
+ Kβ1V2+ε2V3

V2

)
(τ +Υ3 + µ+ δ2)

If R0 > 1, the infection spreads; if R0 < 1, it dies out. This compact formula offers insight into the influence of transmission

rates, susceptible populations and recovery or progression rates on disease dynamics.

3.5. Local Stability of disease free equilibrium Point

The disease free equilibrium of the cholera epidemic model is locally asymptotically stable if all eigenvalues of the Jacobian

matrix |JE1 − λ1| = 0, λi ≤ 0 else unstable. Since

E1 =

{
(1− n)Λ
(ν1 + µ)

,
ρ1VP + ρ2VS

ν3
,
nΛ + ν1SP
(ν2 + ρ1 + µ)

,
ν2VP + ν3SC
(µ+m) + ρ2

, 0, 0, 0, 0

}
The Jacobian matrix of the system at E1 is given by

JE0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−(V1 + µ) 0 0 −βq1 −βq2 0 0 0 −βq3
V1 −(V2 + P1 + µ) 0 0 0 0 0 0 0

0 0 0 −(µ+m + P2) 0 0 0 V3 0

0 0 0 0 −(µ+ Z) βq2 0 K 0

0 0 0 0 Z −(Y1 + Y2 + µ+ δ1) 0 0 0

0 0 0 0 0 Y1 −(Y3 + µ+ δ2) 0 0

0 P1 P2 −Kβq1 −Kβq2 0 − (Kβ(q1 + q2 + q3) + µ) 0

0 0 m 0 Y2 τ + Y3 0 −(µ+ P3) 0

0 0 0 0 0 ε1 ε2 0 −µb

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and the eigenvalues are obtained as

λ1 = −(V1 + µ), λ2 = −(V2 + P1 + µ), λ3 = −(µ+m + P2), λ4 = −(µ+ Z),
λ5 = −(Y1 + Y2 + µ+ δ1), λ6 = −(τ + Y3 + µ+ δ2), λ7 = −Kβ(q1 + q2 + q3), λ8 = −(µ+ P3), λ9 = −µb.

Thus, the disease free equilibrium is locally asymptotically stable since all eigenvalues λ1, . . . , λ9 are negative.

3.6. Sensitivity Analysis of R0

This subsection conducts a sensitivity analysis of the basic reproduction number R0 by differentiating R0 with respect to all

its parameters and evaluating the results using the baseline values of the parameters listed in Table 1. The normalized forward

sensitivity index is defined as:

γP =
∂R0
∂P
× P

R0
(19)

where SR0 is the sensitivity index, xi represents the parameter of interest, and R0 given by

βq1

(
(1−n)λ
(V1+µ+)

+ Kβ1V2+ε2V3
V2

)
(τ +Υ3 + µ+ δ2)

(20)

the sensitivity indices of the basic reproduction number for the model are presented in Table 2. The results provide insights into

how variations in each parameter affect R0.

Table 2. Sensitivity analysis of parameters and indices

Parameter Sensitivity

Ω -1.278688525

η 1.00000000

ψ1 3.738474319× 10−3
ψ2 2.610142447× 10−3
G 9.2234591679× 10−3
ν 0.79965

τ 8.116508333× 10−7
δ 0.017140282

µ 0.004647773279

ρ1 2.00004182× 10−4
ρ2 2.193040109× 10−4
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The sensitivity analysis presented highlights the influence of various parameters on disease dynamics. Notably, Ω has a negative

sensitivity of −1.278688525, indicating that reduction in this parameter can escalate disease prevalence, underscoring its
importance in disease control. Conversely, η displays high sensitivity (1.00000000), suggesting that it is a crucial parameter for

effective intervention strategies. Parameters like τ (treatment rate) exhibit minimal sensitivity (8.116508333× 10−7), indicating
low impact on disease dynamics but still warrant monitoring for overall effectiveness. The low sensitivity values for immunity loss

rates, ρ1 and ρ2, suggest their minor immediate effects, yet they remain important for long-term control strategies. Overall, the

analysis underscores the necessity for targeted interventions which focus on high-sensitive parameters to optimize public health

efforts and improve disease management outcome.

3.7. Model Solution via Laplace Adomian Decomposition Method

From the first equation of the system given by (64), we have

dSP
dt
= (1− n)Λ− β(q1E + q2I + q3B)− (ν1 + µ)SP .

Next, we take the Laplace transform:

ηL [SP (t)− SP (0)] = L [(1− n)Λ− β(q1E + q2I + q3B)− (ν1 + µ)SP ] . (21)

This can be expressed as:

L [SP (t)] =
sP (0)

η
+
L

η
[(1− n)Λ− β(q1E + q2I + q3B)− (ν1 + µ)SP ] .

Since SP (0) = sP0, E(0) = e0, I(0) = i0, B(0) = b0, we can rewrite it as:

L [SP (t)] =
sP0
η
+
L

η
[(1− n)Λ− β(q1E + q2I + q3B)− (ν1 + µ)SP ] .

Taking the inverse Laplace transform yields:

L−1 {L [SP (t)]} = L−1
{
sP0
η
+
L

η
(1− n)Λ

}
− L−1

{
L

η
[β(q1E + q2I + q3B)− (ν1 + µ)SP ]

}
. (22)

Thus, we have:

SP (t) = L
−1
{
sP0
η
+
L

η
(1− n)Λ

}
− L−1

{
L

η
[β(q1E + q2I + q3B)− (ν1 + µ)SP ]

}
.

This can be simplified to:

SP (t) = SP0 + (1− n)Λt2 − L−1
{
L

η
[β(q1E + q2I + q3B)− (ν1 + µ)SP ]

}
.

Next, applying Adomian decomposition, we express SP (t) as follows:

SP (t) = SP0(t) + SP1(t) + SP2(t) + . . .+ SPn(t) =

∞∑
n=0

SPn(t).

This leads to:

∞∑
n=0

SPn(t) = SP0 + (1− n)Λt2 − L−1
{
L

η

[
β

(
q1

∞∑
n=0

En + q2

∞∑
n=0

In + q3

∞∑
n=0

Bn

)
− (ν1 + µ)

∞∑
n=0

SPn

]}
. (23)

Initial Approximation:

SP0(t) = sP0 + (1− n)Λt2, E0(t) = e0, I0(t) = i0, B0(t) = b0.

Recurrence Formula:

∞∑
n=0

SPn+1(t) = −L
−1

{
L

η

[
β

(
q1

∞∑
n=0

En + q2

∞∑
n=0

In + q3

∞∑
n=0

Bn

)
− (ν1 + µ)

∞∑
n=0

SPn

]}
. (24)

First Iteration (when n = 0):

SP1(t) = −L−1
{
L

η

[
β (q1e0 + q2i0 + q3b0)− (ν1 + µ)(sP0 + (1− n)Λt2)

]}
.
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This expression can be simplified to:

SP1(t) = L
−1
{
(ν1 + µ)sP0

η2
− β (q1e0 + q2i0 + q3b0)

η3
− (ν1 + µ)(1− n)Λ

η4

}
.

Thus, we derive the following:

SP1(t) = (ν1 + µ)sP0t − β (q1e0 + q2i0 + q3b0) t2 − (ν1 + µ)(1− n)Λt3. (25)

In same manner from the second variable in (25) above

dSC
dt
= (ρ3 + µ)R + ρ1VP + ρ2VS − ν3SC −Kβ(q1E + q2I + q3B)SC . (26)

Taking the Laplace transform, we get:

L

[
dSC
dt

]
= L [(ρ3 + µ)R + ρ1VP + ρ2VS − ν3SC −Kβ(q1E + q2I + q3B)SC ] . (27)

This leads us to:

ηL{SC(t)} − SC(0) = L [(ρ3 + µ)R + ρ1VP + ρ2VS − ν3SC −Kβ(q1E + q2I + q3B)SC ] . (28)

Thus, we can express L{SC(t)} as:

L{SC(t)} =
SC(0)

η
+
L

η
[(ρ3 + µ)R + ρ1VP + ρ2VS − ν3SC −Kβ(q1E + q2I + q3B)SC ] . (29)

Now, taking the inverse Laplace transform yields:

L−1 [L{SC(t)}] = L−1
[
SC(0)

η

]
+ L−1

[
L

η
[(ρ3 + µ)R + ρ1VP + ρ2VS − ν3SC −Kβ(q1E + q2I + q3B)SC ]

]
. (30)

Therefore, we can express SC(t) as:

SC(t) = L
−1
[
SC(0)

η

]
+ L−1

[
L

η
[(ρ3 + µ)R + ρ1VP + ρ2VS − ν3SC −Kβ(q1E + q2I + q3B)SC ]

]
. (31)

Since SC(0) = sc0, we can rewrite:

SC(t) = L
−1
[
sc0
η

]
+ L−1

[
L

η
[(ρ3 + µ)R + ρ1VP + ρ2VS − ν3SC −Kβ(q1E + q2I + q3B)SC ]

]
. (32)

Thus, we have:

SC(t) = sc0 + L
−1
[
L

η
[(ρ3 + µ)R + ρ1VP + ρ2VS − ν3SC −Kβ(q1E + q2I + q3B)SC ]

]
. (33)

For the Adomian Decomposition, we express:

SC(t) = SC0(t) + SC1(t) + SC2(t) + . . .+ SCn(t) =

∞∑
n=0

SCn(t). (34)

This leads us to:

∞∑
n=0

SCn+1(t) = sc0 + L
−1
[
L

η
[(ρ3 + µ)R + ρ1VP + ρ2VS − ν3SC −Kβ(q1E + q2I + q3B)SC ]

]
. (35)

The initial approximations are defined as follows:

SC0(t) = sc0, E0(t) = e0, I0(t) = i0, B0(t) = b0, R0(t) = R0, VP0(t) = vp0 + nΛt
2, VS0(t) = vs0.

The recurrence formula is expressed as:

∞∑
n=0

SCn+1(t) = L
−1
[
L

η

[
(ρ3 + µ)

∑∞
n=0 Rn + ρ1

∑∞
n=0 VP,n + ρ2

∑∞
n=0 VS,n

−ν3
∑∞
n=0 SC,n −Kβ

(
q1
∑∞
n=0 En + q2

∑∞
n=0 In + q3

∑∞
n=0 Bn

)∑∞
n=0 SC,n

]]
. (36)

From the initial approximation, when n = 0, we can express SC1(t) as follows:
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SC1(t) = L
−1
[
L

η

[
(ρ3 + µ)r0 + ρ1vP0 + ρ2vS0 − ν3sC0
−Kβ(q1e0 + q2i0 + q3b0)sC0

]]
This can be rewritten, incorporating nΛt2:

SC1(t) = L
−1
[
L

η

[
(ρ3 + µ)r0 + ρ1(vP0 + nΛt

2) + ρ2vS0 − ν3sC0
−Kβ(q1e0 + q2i0 + q3b0)sC0

]]
Further expanding this gives:

SC1(t) = L
−1
[
L

η

[
(ρ3 + µ)r0 + ρ1vP0 + ρ1nΛt

2 + ρ2vS0 − ν3sC0
−Kβ(q1e0 + q2i0 + q3b0)sC0

]]
Now, we can express SC1(t) in terms of the Laplace inverse, leading to:

SC1(t) = L
−1
[
(ρ3 + µ)r0 + ρ1vP0 + ρ2vS0 − ν3sC0

η2
− Kβ(q1e0 + q2i0 + q3b0)sC0

η4
+
ρ1nΛ

η5

]
This leads us to:

SC1(t) = [(ρ3 + µ)r0 + ρ1vP0 + ρ2vS0 − ν3sC0] t − [Kβ(q1e0 + q2i0 + q3b0)sC0] t3 +
[
ρ1nΛt

4
]

(37)

From the third equation in (37), we have:

dVP
dt
= nΛ + ν1SP − (ν2 + ρ1 + µ)VP

Taking the Laplace transform results in:

L

[
dVP
dt

]
= L [nΛ + ν1SP − (ν2 + ρ1 + µ)VP ] (38)

Applying the property of the Laplace transform to the left side gives:

ηL

[
dVP
dt

]
− VP (0) = L [nΛ + ν1SP − (ν2 + ρ1 + µ)VP ]

Rearranging yields:

L

[
dVP
dt

]
=
VP (0)

η
+
L

η
[nΛ + ν1SP − (ν2 + ρ1 + µ)VP ]

Taking the inverse Laplace transform, we have:

L−1
{
L

[
dVP
dt

]}
= L−1

[
VP (0)

η
+ L

nΛ

η

]
+ L−1

{
L

η
[ν1SP − (ν2 + ρ1 + µ)VP ]

}
(39)

Since VP (0) = vP0, we find:

VP (t) = L
−1
[
vP0
η
+ L

nΛ

η

]
+ L−1

{
L

η
[ν1SP − (ν2 + ρ1 + µ)VP ]

}
(40)

Continuing, we express VP (t) as:

VP (t) = L
−1
[
vP0
η
+
nΛ

η3

]
+ L−1

{
L

η
[ν1SP − (ν2 + ρ1 + µ)VP ]

}
Further simplifying, we have:

VP (t) = vP0 + nΛt
2 + L−1

{
L

η
[ν1SP − (ν2 + ρ1 + µ)VP ]

}
Next, we apply the Adomian Decomposition method:

VP (t) = VP0(t) + VP1(t) + VP2(t) + · · ·+ VPn(t) =
∞∑
n=0

VPn(t) (41)

Using the recombination formula, we get:

∞∑
n=0

VPn(t) = vP0 + nΛt
2 + L−1

{
L

η

[
ν1

∞∑
n=0

SPn(t)− (ν2 + ρ1 + µ)
∞∑
n=0

VPn(t)

]}
(42)
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Initial Approximation

VP0(t) = vP0 + nΛt
2, SP0(t) = sP0 + (1− n)Λt2

First Iteration when n = 0

∞∑
n=0

VPn+1(t) = L
−1

{
L

η

[
ν1

∞∑
n=0

SP0(t)− (ν2 + ρ1 + µ)
∞∑
n=0

VP0(t)

]}
(43)

VP1(t) = L
−1
{
L

η

[
ν1
(
sP0 + (1− n)Λt2

)
− (ν2 + ρ1 + µ)

(
vP0 + nΛt

2
)]}

VP1(t) = L
−1
{
L

η

[
ν1sP0 + ν1(1− n)Λt2 − (ν2 + ρ1 + µ)vP0 − (ν2 + ρ1 + µ)nΛt2

]}
(44)

VP1(t) = L
−1
{
L

η

[
ν1sP0 + ν1(1− n)Λt2 − (ν2 + ρ1 + µ)vP0 − (ν2 + ρ1 + µ)nΛt2

]}
(45)

VP1(t) = L
−1
{[

ν1sP0
η2

− (ν2 + ρ1 + µ)vP0
η2

+
ν1(1− n)Λ

η4
− (ν2 + ρ1 + µ)nΛ

η5

]}
VP1(t) =

{[
(ν1sP0 − (ν2 + ρ1 + µ)vP0) t + ν1(1− n)Λt3 − (ν2 + ρ1 + µ)nΛt4

]}
(46)

From the fourth variable, in (37) we also have

dVS
dt
= ν2VP − (µ+m)VS − ρ2VS + ν3SC (47)

Taking the Laplace transform:

L

[
dVS
dt

]
= L [ν2VP − (µ+m)VS − ρ2VS + ν3SC ]

ηL

[
dVS
dt

]
− VS(0) = L [ν2VP − (µ+m)VS − ρ2VS + ν3SC ]

L

[
dVS
dt

]
=
VS(0)

η
+
L

η
[ν2VP − (µ+m)VS − ρ2VS + ν3SC ]

Since VS(0) = vS0:

L

[
dVS
dt

]
=
vS0
η
+
L

η
[ν2VP − (µ+m)VS − ρ2VS + ν3SC ]

Taking Laplace inverse:

L−1
{
L

[
dVS
dt

]}
= L−1

[
vS0
η

]
+ L−1

{
L

η
[ν2VP − (µ+m)VS − ρ2VS + ν3SC ]

}
(48)

VS(t) = vS0 + L
−1
{
L

η
[ν2VP − (µ+m)VS − ρ2VS + ν3SC ]

}
Then Adomian Decomposition:

VS(t) = VS0(t) + VS1(t) + VS2(t) + . . .+ VSn(t) =

∞∑
n=0

VSn(t) (49)

∞∑
n=0

VSn(t) = vS0 + L
−1
{
L

η
[ν2VP − (µ+m)VS − ρ2VS + ν3SC ]

}
Initial Approximation:

VSn(t) = vS0, VP0(t) = vP0 + nΛt
2, SC0(t) = sC0

First Iteration, when n = 0:

∞∑
n=0

VSn+1(t) = L
−1

{
L

η

[
ν2

∞∑
n=0

VP0(t)− (µ+m)
∞∑
n=0

VS0(t)− ρ2
∞∑
n=0

VS0(t) + ν3

∞∑
n=0

SC0(t)

]}
(50)

VS1(t) = L
−1
{
L

η

[
ν2(vP0 + nΛt

2)− (µ+m)vS0 − ρ2vS0 + ν3sC0
]}
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VS1(t) = L
−1
{
L

η

[
ν2vP0 − (µ+m + ρ2)vS0 + ν3sC0 + ν2nΛt2

]}

VS1(t) = L
−1
{
(ν2vP0 − (µ+m + ρ2)vS0 + ν3sC0)

η2
+
ν2nΛ

η4

}
VS1(t) = (ν2vP0 − (µ+m + ρ2)vS0 + ν3sC0)t + ν2nΛt3 (51)

Also from fifth equation of (37)

dE

dt
= β(q1E + q2I + q3B)(SP +KSC − (µ+ z)E

Taking the Laplace transform

L

[
dE

dt

]
= L [β(q1E + q2I + q3B)(SP +KSC − (µ+ z)E] (52)

ηL

[
dE

dt

]
− E(0) = L [β(q1E + q2I + q3B)(SP +KSC − (µ+ z)E]

L

[
dE

dt

]
=
E(0)

η
+
L

η
[β(q1E + q2I + q3B)(SP +KSC − (µ+ z)E]

Since E(0)=e0

L

[
dE

dt

]
=
e0
η
+
L

η
[β(q1E + q2I + q3B)(SP +KSC − (µ+ z)E]

Taking Laplace inverse

L−1
{
L

[
dE

dt

]}
= L−1

[
e0
η

]
+ L−1

{
L

η
[β(q1E + q2I + q3B)(SP +KSC − (µ+ z)E]

}

E(t) = e0 + L
−1
{
L

η
[β(q1E + q2I + q3B)(SP +KSC − (µ+ z)E]

}
Adomia decomposition

E(t) = E0(t) + E1(t) + E2(t) + ........................En(t) =

∞∑
n=0

En(t)

Recommence Formula
∞∑
n=0

En(t) = e0 + L
−1
{
L

η
[β(q1E + q2I + q3B)(SP +KSC − (µ+ z)E]

}

∞∑
n=0

En+1(t) = e0 + L
−1

Lη
 β(q1

∞∑
n=0

E0(t) + q2
∞∑
n=0

I0(t) + q3
∞∑
n=0

B0(t))(
∞∑
n=0

SP 0(t)

+K
∞∑
n=0

SC0(t)− (µ+ z)
∞∑
n=0

E0(t)




Initial Approximation

E0(t) = e0, I0(t) = i0, B0(t) = b0, SP 0(t) = sP 0 + (1− n)Λt2, SC0(t) = sc 0

First iteration when n=0

E1(t) = L
−1
{
L

η

[
β(q1e0 + q2i0 + q3b0)(sP 0 + (1− n)Λt2
+KsC0)− (µ+ z)e0

]}

E1(t) = L
−1
{
L

η

[
β(q1e0 + q2i0 + q3b0)sP 0 + β(q1e0 + q2i0 + q3b0)(1− n)Λt2
+β(q1e0 + q2i0 + q3b0)KsC0)− (µ+ z)e0

]}

E1(t) = L
−1

{[
β(q1e0+q2 i0+q3b0)sP 0

η3
+ β(q1e0+q2 i0+q3b0)(1−n)Λ

η5

+ β(q1e0+q2 i0+q3b0)KsC0)
η4

− (µ+z)e0
η2

]}

E1(t) =


 −(µ+ z)e0t + β(q1e0 + q2i0 + q3b0)sP 0t2 + β(q1e0 + q2i0 + q3b0)KsC0)t3β(q1e0 + q2i0 + q3b0)(1− n)Λt4


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And the first two approximate model result yields:

SP (t) =

2∑
n=0

SP,0,n, VP (t) =

2∑
n=0

VP,0,n, SC(t) =

2∑
n=0

SC,0,n,

E(t) =

2∑
n=0

E0,n, I(t) =

2∑
n=0

I0,n, Q(t) =

2∑
n=0

Q0,n,

R(t) =

2∑
n=0

R0,n, B(t) =

2∑
n=0

B0,n.

3.8. Convergence Analysis

In this section, we refer to [14] to demonstrate the convergence of the solution. The iterative solution (3.7) can be illustrated

as

νn = Ωνn−1, νn−1 =

n∑
j=1

νj , n = 1, 2, 3, . . . (53)

and we prove the convergence of {vn} using the subsequent theorem.

Theorem 2 Let B1 be a Banach Space and Ω : B1 → B1 a contraction mapping with constant 0 < δ < 1. Then, there exists a

unique point υ in Ω such that Ω(υ) = υ and υ = (S, V, P, I, H,R,B). Let υ0 ∈ Ps(υ), where Ps(υ) = {υ′ ∈ B1 : ∥υ′ − υ∥ < s}.
Then, we have υm ∈ Ps(υ)∀m and υm → υ.

Proof

Using mathematical induction, when m = 1, we have

∥υ0 − υ∥ = ∥Ω(υ0)−Ω(υ)∥ ≤ δ∥υ0 − υ∥.

Assuming the statement is true for m, we have

∥υm−1 − υ∥ ≤ δm−1∥υ0 − υ∥.

Thus,

∥υn − υ∥ = ∥Ω(υn−1)−Ω(υ)∥ ≤ δ∥υm−1 − υ∥ ≤ δm∥υ0 − υ∥.

Again, since υ0 ∈ Ps(υ), we have ∥υ0 − υ∥ < s and

∥υn − υ∥ ≤ δm∥υ0 − υ∥ < δms < s.

Consequently, this proves that υm ∈ Ps(υ). Moreover, since

lim
m→∞

δm = 0,

therefore,

lim
m→∞

δm∥υn − υ∥ = 0,

and

lim
m→∞

υm = υ,

which completes the proof. Comparatively, numerical iteration of Laplace Adomian Decomposition method with the Homotopy

perturbation method for the model solution as the forthcoming sections will delve into the analysis of the homotopy perturbation

method, elucidating its application and implications in our quest for a solution.

∆(α) = κ(τ) τ ∈ λ (54)

Subject to the boundary condition

Ψ(α,αn) = 0 τ ∈
∏

(55)

Operator ∆ represents the differential operator, Ψ denotes the boundary operator, κ(τ) is an analytic function, Φ is a defined

domain bounded by
∏
, and αn is a normal vector derivative drawn externally from Φ. Thus we can separate the operator ∆(α)

into two:

∆(α) = LT (α) + NT (α) (56)
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The operator LT (α), NT (α) denotes the linear and nonlinear term respectively such that equation implies:

LT (α) + NT (α) = κ(τ) τ ∈ λ (57)

We can construct a Homotopy so that

H(f , p) = (1− p)[LT (f )− LT (ω0)] + p[∆(f )− κ(τ)] = 0 (58)

Where p is an embedding parameter which can undergo a deformation process of changing from [0, 1]. Equation the below

equation is further simplified to obtain:

H(f , p) = LT (f )− LT (α0) + p[LT (α0)] + p[NT (α0)− κ(τ)] = 0 (59)

as equation p → 1 yields:
H(f , 0) = LT (f )− LT (α0) = 0 (60)

And when p → 1 yields:
H(f , 1) = ∆(f )− κ(τ) = 0 (61)

We can naturally assume the solution as a power series such that

f (t) = f0(t) + pf1(t) + p
2f2(t)+·n fn(t) (62)

Evaluating the above equations, and comparing coefficients of equal powers of p.The values of f0(t), f1(t), f2(t) are obtained by

solving the resulting ordinary differential equations. Thus, the approximate solution is obtained as:

f (t) = lim
p→1

fn(t) = f1(t) + f2(t) + f3(t) + · (63)

To conduct numerical simulation on the mathematical model, we create the following iterative for the model equation.

(1− p)dSP
dt
+ p

(
(1− n)Λ− β(q1E + q2I + q3B)− (V1 + µ)SP

)
,

(1− p)dVP
dt
+ p

(
nΛ + V1SP − (v2 + p1 + µ)VP

)
,

(1− p)dSC
dt
+ p

(
(ρ3 + µ)R + ρ1VP + ρ2VS − V3SC −Kβ(q1E + q2I + q3B)SC

)
,

(1− p)dVS
dt
+ p

(
v2VP − (µ+m)VS − ρ2VS + V3SC

)
,

(1− p)dE
dt
+ p

(
β((q1E + q2I + q3B)(S +KSC)− (µ+ Z)E)

)
,

(1− p) dI
dt
+ p

(
ZE − (Υ1 +Υ2 + µ+ δ1 + µ)I

)
,

(1− p)dQ
dt
+ p

(
Υ1I − (τ +Υ3 + δ2 + µ)Q

)
,

(1− p)dR
dt
+ p

(
Υ2I + (τ +Υ3)Q+mVS − (µ+ ρ3)R

)
,

(1− p)dB
dt
+ p

(
ω + ξ1E + ξ2I − µbB

)
.

(64)

Simplifying the preceding equation above results in the respective iterations.The results obtained are similar to that of (LADM),

but in comparison of convergence, LADM gives more accurate and desired result to the research study.

4. Results

In this section, numerical simulations were performed on the mathematical model to evaluate the transmission dynamics of

cholera within the human population and the results are presented as graphs. The simulations were carried out using the Maple

18 software.
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(A) (B)

Figure 2. The Impact of Childhood Immunization on Cholera Eradication

(A) (B)

(C)

Figure 3. The Effect of Imperfect Adult Vaccination on Susceptible and Partially Immune Populations
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(A) (B)

Figure 4. The Effect of a Perfect Vaccine Dose on Partially Immune, Boosted, and Recovered Populations

(A) (B)

Figure 5. The Effect of Waning Immunity Due to Imperfect Vaccination

Figure 6. The Effect of Waning Immunity Due to Immunosenescence of Secondary Vaccine
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5. Discussion

The results of the numerical simulations provide critical insights into the impact of vaccination on cholera dynamics within human

populations. Figure 1A illustrates how childhood immunization significantly reduces susceptibility to cholera over time, with a

notable decline in vulnerability observed eight years after the initiation of infant vaccination programs. This graph underscores the

pivotal role of early immunization in decreasing individual risk and enhancing community resilience against cholera outbreaks. In

Figure 1B, the focus shifts to the impact of increased primary vaccination coverage among infants. The rising curve demonstrates

a corresponding enhancement in population-level immunity, highlighting the effectiveness of widespread vaccination initiatives in

bolstering community defenses against cholera. This graph emphasizes the importance of high vaccination coverage rates among

infants to achieve herd immunity and curb disease transmission. Figure 1C delves into the controlled growth of cholera-exposed

individuals post-vaccination. The graph illustrates a managed increase in the number of exposed individuals, underscoring the

efficacy of targeted immunization strategies in limiting the spread of cholera within vaccinated populations. This figure highlights

how focused vaccination efforts can mitigate the impact of outbreaks by reducing the pool of susceptible individuals. Figure 2A

reveals heightened susceptibility to cholera in regions where adult vaccination coverage remains inadequate. This stark depiction

underscores the vulnerabilities that persist when vaccination efforts do not reach all segments of the population, emphasizing the

need for comprehensive immunization strategies across all age groups to achieve robust protection. Complementing this, Figure

2B illustrates a rise in partially immune individuals despite adult vaccination efforts. This graph stresses the importance of closing

immunity gaps through comprehensive coverage, as partial immunity can still contribute to disease transmission and outbreak

dynamics. Figure 3A correlates secondary doses with enhanced immunity, illustrating how additional vaccine doses strengthen

protection against cholera over time. Figure 3B depicts the increasing proportion of individuals achieving perfect immunity through

vaccination, demonstrating the cumulative effect of effective vaccination strategies in building population resilience. Furthermore,

Figure 3C underscores the benefits of vaccination by showing a rising trend in recovery rates post-vaccination, emphasizing the

broader public health benefits of vaccination programs in reducing disease severity and accelerating recovery times among affected

individuals. Figure 4A notes the declining numbers of individuals protected by primary vaccination due to waning immunity over

time. This highlights the challenge of maintaining long-term protection against cholera without supplementary measures such

as booster doses. Figure 4B addresses the rapid waning of immunity post-vaccination, emphasizing the need for robust booster

strategies to sustain protective immunity levels among vaccinated populations. This figure advocates for proactive approaches to

maintaining vaccine effectiveness and preventing the resurgence of cholera outbreaks. Finally, Figure 5 emphasizes the declining

immunity among previously recovered individuals, reinforcing the necessity of sustained vaccination efforts through additional

boosters to maintain community-wide protection. Collectively, these insights underscore the imperative nature of comprehensive

vaccination strategies in mitigating cholera and ensuring enduring public health resilience against infectious diseases.

6. Limitation to study

A limitation of this study is that the mathematical model, while incorporating key epidemiological factors and intervention

strategies such as booster vaccination and quarantine, relies on several simplifying assumptions that may not fully capture

the complexities of real-world on cholera dynamics. The model assumes homogeneous mixing of the population and constant

parameter values over time, which may not reflect variations in human behaviour, environmental factors, access to healthcare or

regional disparities in infrastructure. Additionally, the model does not account for potential logistical challenges in implementing

vaccination and quarantine measures, such as vaccine availability, public compliance, identification and isolation of infected

individuals. These factors could significantly influence the effectiveness of the proposed interventions in actual outbreak scenarios.

7. Conclusion

In conclusion, our study demonstrates that booster vaccination and effective quarantine measures are critical interventions for

controlling cholera. The findings indicate that targeted booster campaigns significantly enhance population immunity and reduce

cholera incidence, particularly during outbreaks. Additionally, well-implemented quarantine protocols play a vital role in curbing

the disease’s spread by isolating infected individuals swiftly. The integration of these strategies offers a robust approach to cholera

control, leading to greater reductions in incidence compared to singular interventions. Implementing these recommendations can

strengthen cholera control efforts and improve public health outcomes.
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