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1. Introduction

There is much interest in studying the oscillatory behavior of solutions of hyperbolic equations. Our objective here is to provide

oscillation theorems for nonlinear neutral hyperbolic equations with delay of the form

∂

∂t

(
r(t)

∂

∂t

(
u(x, t) + h(t)u(x, τ(t))

))
+p(t)

∂

∂t
u(x, ρ(t))− a(t)∆u(x, t)− b(t)∆u(x, η(t)) (E+)

+ q(x, t)φ
(
u(x, σ(t))

)
= f (x, t), (x, t) ∈ G × (0,∞) ≡ Ω

and

∂

∂t

(
r(t)

∂

∂t

(
u(x, t) + h(t)u(x, τ(t))

))
−p(t) ∂

∂t
u(x, ρ(t))− a(t)∆u(x, t)− b(t)∆u(x, η(t)) (E−)

+ q(x, t)φ
(
u(x, σ(t))

)
= f (x, t), (x, t) ∈ Ω,

where G is a bounded domain in Rn with piecewise smooth boundary ∂G and ∆ is the Laplacian in Rn, with one of the following
boundary conditions

u = 0, (x, t) ∈ ∂G × (0,∞), (B1)

∂u

∂ν
+ γ(x, t)u = 0, (x, t) ∈ ∂G × (0,∞), (B2)

where γ(x, t) is a non-negative continuous function on ∂G × (0,∞) and ν denotes the unit exterior normal vector to ∂G.
We assume throughout this paper that the following conditions hold:

(H1) r(t), h(t), p(t), a(t), b(t) ∈ C([0,∞]; [0,∞));
τ(t), η(t), σ(t) ∈ C([0,∞]; [0,∞)) ρ(t) ∈ C2([0,∞]; [0,∞));
τ(t) ≤ t, ρ(t) ≤ t, σ(t) ≤ t;
lim
t→∞
τ(t) = lim

t→∞
ρ(t) = lim

t→∞
η(t) = lim

t→∞
σ(t) =∞;

(H2) q(x, t) ∈ C(Ω̄; [0,∞));
φ(ξ) ∈ C(R;R) are convex in [0,∞) and ξφ(ξ) > 0 for ξ ̸= 0;

(H3) f (x, t) ∈ C(Ω̄;R).
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Definition 1 By a solution of Eq. (E±) we mean a function u ∈ C2(Ḡ × [t−1,∞))× C1(Ḡ × [t̂−1,∞)× C(Ḡ × [t̃−1,∞) which
satisfies Eq. (E±), where

t−1 = min

{
0, inf
t≥0
(τ(t))

}
, t̂−1 = min

{
0, inf
t≥0
(ρ(t))

}
,

t̃−1 = min

{
0, inf
t≥0
(σ(t))

}
.

Definition 2 A solution u of Eq. (E±) is said to be oscillatory in Ω if u has a zero in G × (T,∞) for any T > 0.

Introduce the following notation:

q(t) = min{q(x, t) : x ∈ Ḡ},

π(t) =

∫ ∞
t

1

r(s)
ds.

With each solution u of the problems (E±), (B1) or (E±), (B2) we associate the function

U(t) ≡ KΦ
∫
G

u(x, t)Φ(x)dx, Ũ(t) ≡ 1

|G|

∫
G

u(x, t)dx,

F (t) ≡ KΦ
∫
G

f (x, t)Φ(x)dx, F̃ (t) ≡ 1

|G|

∫
G

f (x, t)dx,

where KΦ = (
∫
G
Φ(x)dx)−1 and |G| =

∫
G
dx .

It divides into the following two cases (P1) and (P2):

(P1)

∫ ∞
t0

1

r(s)
ds =∞, (P2)

∫ ∞
t0

1

r(s)
ds <∞.

In recent years, there has been a great deal of interest in studying oscillatory behavior of solutions to nonlinear fractional

and differential equations; see [2], [3], [4], [5]. The problem of establishing oscillation criteria for boundary value problems for

hyperbolic equations has been reported by several authors [6], [7], [8] [10], [11] [1], [12], [14], [13], [15], [9]], and the references

cited therein. However, to the author’s knowledge, the problem represented by hyperbolic equation (E) with constant coefficients

has studied at only one paper. This corresponding results for hyperbolic equation (E) is due to Kirane and Parhi, see [8], but

we did not find a paper which gave sufficient conditions to guarantee the existence of an oscillatory solutions for hyperbolic

equation (E). On the basis of the ideas exploited by Tanaka [14], Feng and Sun [7], we derive some renew oscillation results for

nonlinear neutral hyperbolic equation (E). As we will explain in the examples, we can see that the results of this paper can be

used to solve problems that cannot be solved by the results of [14].

2. Reduction to one-dimensional problems

In this section we reduce the multi-dimensional problems for (E±) to one-dimensional problems. When we investigate the

oscillatory properties of the solution of problem (E±), (B1) , we use following eigenvalue problem. It is known that the first

eigenvalue λ1 of the eigenvalue problem

−∆w = λw in G,

w = 0 on ∂G

is positive, and the corresponding eigenfunction Φ(x) can be chosen so that Φ(x) > 0 in G.

Theorem 1 If the functional differential inequalities

(r(t)(x(t) + h(t)x(τ(t)))′)′ + p(t)x ′(ρ(t)) + q(t)φ(x(σ(t))) ≤ ±F (t) (1)

have no eventually positive solution, then every solution u(x, t) of the problem (E+), (B1) is oscillatory in Ω.
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Proof. Suppose to the contrary that there is a nonoscillatory solution u of the problem (E+), (B1). Without loss of generality

we may assume that u(x, t) > 0 in G × [t0,∞) for some t0 > 0, because the case where u(x, t) < 0 can be treated similarly.
Since (H1) holds, we see that u(x, τ(t)) > 0, u(x, ρ(t)) > 0, u(x, η(t)) > 0 and u(x, σ(t)) > 0 in G × [t1,∞) for some t1 ≥ t0.
Multiplying (E+) by Φ(x)KΦ and integrating over G, we obtain

(r(t)(U(t) + h(t)U(τ(t)))′)′ + p(t)U ′(ρ(t)) (2)

− a(t)KΦ
∫
G

∆u(x, t)Φ(x)dx − b(t)KΦ
∫
G

∆u(x, η(t))Φ(x)dx

+KΦ

∫
G

q(x, t)φ(u(x, σ(t)))Φ(x)dx = F (t), t ≥ t1.

From Green’s formula it follows that

KΦ

∫
G

∆u(x, t)Φ(x)dx = −λ1U(t) ≤ 0, t ≥ t1, (3)

KΦ

∫
G

∆u(x, η(t))Φ(x)dx = −λ1U(η(t)) ≤ 0, t ≥ t1. (4)

An application of Jensen’s inequality shows that

KΦ

∫
G

q(x, t)φ(u(x, σ(t)))Φ(x)dx ≥ q(t)φ(U(σ(t))), t ≥ t1. (5)

Combining (2) – (5) yields

(r(t)(U(t) + h(t)U(τ(t)))′)′ + p(t)U ′(ρ(t)) + q(t)φ(U(σ(t))) ≤ F (t), t ≥ t1.

Therefore U(t) is an eventually positive solution of (1). This contradicts the hypothesis and copletes the proof. �
Similarly we can prove the problem (E−), (B1), and so, we omit the following proof of theorem.

Theorem 2 If the functional differential inequalities

(r(t)(x(t) + h(t)x(τ(t)))′)′ − p(t)x ′(ρ(t)) + q(t)φ(x(σ(t))) ≤ ±F̃ (t) (6)

have no eventually positive solution, then every solution u(x, t) of the problem (E−), (B1) is oscillatory in Ω.

Theorem 3 If the functional differential inequalities (1) have no eventually positive solution, then every solution u(x, t) of the

problem (E+), (B2) is oscillatory in Ω.

Proof. Suppose to the contrary that there is a nonoscillatory solution u of the problem (E+), (B2). Without loss of generality
we may assume that u(x, t) > 0 in G × [t0,∞) for some t0 > 0. Since (H1) holds, we see that u(x, τ(t)) > 0, u(x, ρ(t)) > 0,
u(x, η(t)) > 0 and u(x, σ(t)) > 0 in G × [t1,∞) for some t1 ≥ t0. Dividing (E+) by |G| and integrating over G, we obtain

(r(t)(Ũ(t) + h(t)Ũ(τ(t)))′)′ + p(t)Ũ ′(ρ(t)) (7)

− a(t)|G|

∫
G

∆u(x, t)dx − b(t)|G|

∫
G

∆u(x, η(t))dx +
1

|G|

∫
G

q(x, t)φ(u(x, σ(t)))dx = F̃ (t), t ≥ t1.

It follows from Green’s formula that∫
G

∆u(x, t)dx =

∫
∂G

∂u

∂ν
(x, t)dS = −

∫
∂G

γ(x, t)u(x, t)dS ≤ 0, (8)∫
G

∆u(x, η(t))dx =

∫
∂G

∂u

∂ν
(x, η(t))dS = −

∫
∂G

γ(x, η(t))u(x, η(t))dS ≤ 0 (9)

for t ≥ t1. Applying Jensen’s inequality, we observe that

1

|G|

∫
G

q(x, t)φ(u(x, σ(t)))dx ≥ q(t)φ(Ũ(σ(t))), t ≥ t1. (10)

Combining (7) – (10) yields

(r(t)(Ũ(t) + h(t)Ũ(τ(t)))′)′ + p(t)Ũ ′(ρ(t)) + q(t)φ(Ũ(σ(t))) ≤ F̃ (t), t ≥ t1.

Therefore Ũ(t) is an eventually positive solution of (1). This contradicts the hypothesis and complete the proof. �

Theorem 4 If the functional differential inequalities (6) have no eventually positive solution, then every solution u(x, t) of the

problem (E−), (B2) is oscillatory in Ω.
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3. Nonlinear differential inequalities of neutral type

From the discussion in Section 2 it follows that the problem of establishing oscillation criteria for the Eq. (E±) can be reduced

to the investigation of the properties of the solution of second order neutral differential inequalities. The following notation will

be used:

Θ(t) = θ(t)− h(t)θ(τ(t))−
∫ t
t0

p(s)θ(ρ(s))

r(s)ρ′(s)
ds,

Θ̃(t) = θ(t)− h(t)θ(τ(t))−
∫ ∞
t

p(s)θ(ρ(s))

r(s)ρ′(s)
ds,

[φ(z)]+ = max{φ(z), 0}.

Theorem 5 Under the hypothesis (P1) holds and the following:

(H4)
(
p(t)
ρ′(t)

)′
≤ 0;

(H5) there exists a function θ ∈ C2[t0,∞) such that rθ ∈ C1[t0,∞), (r(t)θ′(t))′ = f (t) and θ(t) is oscillatory.

If ∫ ∞
t0

q(t)φ

([(
1− h(σ(t))−

∫ σ(t)
t0

p(s)

r(s)ρ′(s)
ds

)
c +Θ(σ(t))

]
+

)
dt =∞ (11)

for every c > 0, then the differential inequality

(r(t)(y(t) + h(t)y(τ(t)))′)′ + p(t)y ′(ρ(t)) + q(t)φ(y(σ(t))) ≤ f (t) (12)

has no eventually positive solutions.

Proof. Suppose that this is not true and let y(t) be a positive solution of inequality (12) in [t1,∞), where t1 ≥ t0. We set

z(t) = y(t) + h(t)y(τ(t)) +

∫ t
t1

p(s)

r(s)ρ′(s)
y(ρ(s))ds − θ(t), (13)

then it is easy to check that

(r(t)z ′(t))′ −
(
p(t)

ρ′(t)

)′
y(ρ(t)) + q(t)φ(y(σ(t))) ≤ 0, t ≥ t1. (14)

From (H4) we see that

(r(t)z ′(t))′ ≤ 0. (15)

Hence we conclude that r(t)z ′(t) is nonincreasing for t ≥ t1, so that z ′(t) ≥ 0 or z ′(t) < 0 for t ≥ t1. We can find that z(t) > 0
for t ≥ t1. In fact if z(t) ≤ 0 for t ≥ t1, then

0 ≥ z(t) ≥ y(t)− θ(t),

which contradicts that θ(t) is oscillatory. Next if we suppose that z ′(t) < 0 for t ≥ t1. Integrating (15) over [t1, t] yields

r(t)z ′(t) ≤ r(t0)z ′(t0) < 0, t ≥ t1. (16)

Multiplying (16) by 1/r(t) and integrating over [t1, t], we obtain

z(t) ≤ z(t0) + r(t0)z ′(t0)
∫ t
t1

1

r(s)
ds, t ≥ t1.

Letting t →∞ in above inequality, we show that lim
t→∞
z(t) = −∞ because of (P1). This contradicts the fact that z(t) > 0 for

t ≥ t1, and so, z(t) > 0 and z ′(t) ≥ 0 for t ≥ t1. In view of (13), we see that

y(t) = z(t)− h(t)y(τ(t))−
∫ t
t1

p(s)

r(s)ρ′(s)
y(ρ(s))ds + θ(t). (17)

On the other hand, we have

y(t) ≤ z(t) + θ(t) (18)
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for t ≥ t1. Substituting (18) into (17) yields

y(t) ≥ z(t)− h(t)
(
z(τ(t)) + θ(τ(t))

)
−
∫ t
t1

p(s)

r(s)ρ′(s)

(
z(ρ(s)) + θ(ρ(s))

)
ds + θ(t)

= z(t)− h(t)z(τ(t))−
∫ t
t1

p(s)

r(s)ρ′(s)
z(ρ(s))ds +Θ(t), t ≥ t1.

Since z(t) > 0 and z ′(t) ≥ 0, we show that
z(t) ≥ c, t ≥ t1

for every c > 0. From the above discussion it is obvious that

y(t) ≥
(
1− h(t)−

∫ t
t1

p(s)

r(s)ρ′(s)
ds
)
c +Θ(t), t ≥ t1.

Since y(t) is eventually positive, we have

y(t) ≥
[(
1− h(t)−

∫ t
t1

p(s)

r(s)ρ′(s)
ds
)
c +Θ(t)

]
+

≡ H(t), t ≥ t1. (19)

Take t2 ≥ t1 so large that σ(t) ≤ t1 for t ≥ t2. Combining (14) and (19) we have

(r(t)z ′(t))′ + q(t)φ (H(σ(t))) ≤ 0, t ≥ t1.

Integrating the above inequality over [t2, t] yields∫ t
t2

q(s)φ (H(σ(s))) ds ≤ r(t2)z ′(t2)− r(t)z ′(t) ≤ r(t2)z ′(t2),

which implies that ∫ ∞
t2

q(s)φ (H(σ(s))) ds <∞.

This contradicts the condition (11). �

Theorem 6 Under the hypothesis (P1), (H5) hold and the following:

(H6)
(
p(t)
ρ′(t)

)′
≥ 0.

If ∫ ∞
t0

q(t)φ

([(
1− h(σ(t))−

∫ ∞
σ(t)

p(s)

r(s)ρ′(s)
ds

)
c + Θ̃(σ(t))

]
+

)
dt =∞ (20)

for every c > 0, then the differential inequality

(r(t)(y(t) + h(t)y(τ(t)))′)′ − p(t)y ′(ρ(t)) + q(t)φ(y(σ(t))) ≤ f (t) (21)

has no eventually positive solutions.

Proof. Suppose that this is not true and let y(t) be a positive solution of inequality (12) in [t1,∞), where t1 ≥ t0. Setting

w(t) = y(t) + h(t)y(τ(t)) +

∫ ∞
t

p(s)

r(s)ρ′(s)
y(ρ(s))ds − θ(t), (22)

then it is easy to check that

(r(t)w ′(t))′ +

(
p(t)

ρ′(t)

)′
y(ρ(t)) + q(t)φ(y(σ(t))) ≤ 0, t ≥ t1. (23)

From (H6) we see that

(r(t)w ′(t))′ ≤ 0.

As in the proof of Theorem 5 it is easy to see that w(t) > 0 and w ′(t) ≥ 0 for t ≥ t1. Also we can lead to the following inequality

y(t) ≥
[(
1− h(t)−

∫ ∞
t

p(s)

r(s)ρ′(s)
ds
)
c +Θ(t)

]
+

≡ H̃(t), t ≥ t1. (24)
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Combining (23) and (24) we have

(r(t)w ′(t))′ + q(t)φ
(
H̃(σ(t))

)
≤ 0, t ≥ t1.

Integrating the above inequality over [t2, t] yields∫ ∞
t2

q(s)φ
(
H̃(σ(s))

)
ds <∞.

This contradicts the condition (20). �
Next we need the following lemmas by Tanaka[12] for the case of (P2).

Lemma 1 Suppose that (P2) hold. If y(t) is an eventually positive solution of (21), then z(t) is bounded above and satisfies

z(t) ≥ −π(t)r(t)z ′(t) (25)

for all sufficiently large t ≥ t0.

Lemma 2 Assume that (P2) hold. Let y(t) be an eventually positive solution of (21). Then there exist a constant c > 0 and a

number t2 ≥ t1 such that
z(t) ≥ cπ(t), t ≥ t2.

Theorem 7 Under the hypothesis (P2), (H4) and (H5) hold. If∫ ∞
t0

π(t)q(t)φ
(
[cA(σ(t))π(γ(σ(t))) + Θ(σ(t))]+

)
dt =∞ (26)

for every c > 0, then the differential inequality (12) has no eventually positive solutions, where

A(t) =

(
π(t)

π(γ(t))
− h(t)−

∫ t
t0

p(s)

r(s)ρ′(s)
ds

)
,

γ(t) = min{τ(t), ρ(t), t}.

Proof. If differential inequality (12) has an eventually positive solution, then there exists t1 ≥ t0 such that y(t) > 0 for t ≥ t1.
As in the proof of Theorem 5, we obtain

(r(t)z ′(t))′ ≤ 0, t ≥ t1.

Then it follows that either

z(t) > 0, z ′(t) ≥ 0 or z(t) > 0, z ′(t) < 0

holds for t ≥ t1. Now we assume that z(t) > 0, z ′(t) ≥ 0 holds. Since π(t) is decreasing, we obtain

y(t) ≥
(
1−

(
h(t) +

∫ t
t1

p(s)

r(s)ρ′(s)
ds

)
π(γ(t))

π(t)

)
z(t) + Θ(t), t ≥ t1. (27)

Next we assume that z(t) > 0, z ′(t) < 0 holds. From the definition of z(t) we obtain

y(t) = z(t)− h(t)z(τ(t))− z(ρ(ξ))
∫ t
t1

p(s)

r(s)ρ′(s)
ds +Θ(t), t ≥ t1

for some ξ ∈ [t1, t]. It follows from Lemma 1 that (25) hold. Then it is obvious that
(
z(t)
π(t)

)
is nondecreasing (see, [7]), since

(
z(t)

π(t)

)′
=
z ′(t)π(t)− z(t)π′(t)

π2(t)
=
r(t)z ′(t)π(t) + z(t)

π2(t)
≥ 0

for t ≥ t1. Hence, it is easy to see that

y(t) ≥
(
1− h(t)

(
π(τ(t))

π(t)

)
−
∫ t
t1

p(s)

r(s)ρ′(s)
ds

(
π(ρ(ξ))

π(t)

))
z(t) + Θ(t) (28)

for t ≥ t1. Combining Lemma 2 with (27) or (28) respectively, we have

y(t) ≥ c
(
π(t)−

(
h(t) +

∫ t
t1

p(s)

r(s)ρ′(s)
ds

)
π(γ(t))

)
+Θ(t), t ≥ t1.
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Substituting this inequality into (14) yields

(r(t)z ′(t))′ + q(t)φ([cA(σ(t))π(γ(σ(t))) + Θ(σ(t))]+) ≤ 0, t ≥ t1. (29)

Multiplying (29) by π(t) and integrating over [t1, t], we obtain

π(t)r(t)z ′(t) + z(t)− π(t1)r(t1)z ′(t1)− z(t1)

+

∫ t
t1

π(s)q(s)φ([cA(σ(s))π(γ(σ(s))) + Θ(σ(s))]+)ds ≤ 0.

Using the relation (25), the above inequality reduces to

∫ t
t1

π(s)q(s)φ([cA(σ(s))π(γ(σ(s))) + Θ(σ(s))]+)ds ≤ π(t1)r(t1)z
′(t1) + z(t1),

which we can leads to the contradiction and completes the proof. �

Corollary 1 Under the hypothesis (P2) and (H4) hold. If

lim inf
t→∞

∫ t
t0

(π(t)− π(s))f (s)ds = −∞, (30)

then the differential inequality (12) has no eventually positive solutions.

Proof. Let y(t) be an eventually positive solution of the differential inequality (12). Then there exists t1 ≥ t0 such that y(t) > 0
for t ≥ t1. We choose the following function

z̃(t) = y(t) + h(t)y(τ(t)) +

∫ t
t0

p(s)

r(s)ρ′(s)
y(ρ(s))ds.

Then we rewrite (12) as

(r(t)z̃ ′(t))′ ≤ f (t), t ≥ t1.

Integrating the above inequality over [t1, t] and dividing both sides by r(t), we have

z̃ ′(t) ≤ r(t1)z̃ ′(t1)/r(t) +
1

r(t)

∫ t
t1

f (s)ds.

Further integration yields

z̃(t) ≤ z̃(t1) + r(t1)z̃ ′(t1)
∫ t
t1

1

r(s)
ds +

∫ t
t1

1

r(s)

∫ s
f (u)duds.

Taking inferior limit as t →∞, it is clear that
0 ≤ lim inf

t→∞
z̃(t) ≤ −∞,

which contradicts and completes the proof. �

Theorem 8 Under the hypothesis (P2), (H5) and (H6) hold. If∫ ∞
t0

π(t)q(t)φ
([
cÃ(σ(t))π(γ(σ(t))) + Θ̃(σ(t))

]
+

)
dt =∞ (31)

for every c > 0, then the differential inequality (21) has no eventually positive solutions, where

Ã(t) =

(
π(t)

π(γ(t))
− h(t)−

∫ ∞
t

p(s)

r(s)ρ′(s)
ds

)
.
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Proof. Let y(t) be an eventually positive solution of the differential inequality (21). Then there exists t1 ≥ t0 such that y(t) > 0
for t ≥ t1. From the function z(t) as in (22) it follows that

y(t) = z(t)− h(t)y(τ(t))−
∫ ∞
t

p(s)

r(s)ρ′(s)
y(ρ(s))ds + θ(t) (32)

for t ≥ t1. Substituting z(t) ≥ y(t)− θ(t) into (32) yields

y(t) = z(t)− h(t)z(τ(t))−
∫ ∞
t

p(s)

r(s)ρ′(s)
z(ρ(s))ds + Θ̃(t),

which implies that

y(t) = z(t)− h(t)z(τ(t))− z(ρ(ξ))
∫ ∞
t

p(s)

r(s)ρ′(s)
ds + Θ̃(t)

for some ξ ∈ [t,∞]. Using the same proof of theorem 7 we have

y(t) ≥
[
cÃ(t)π(γ(t)) + Θ̃(t)

]
+
, t ≥ t1. (33)

Hence it follows from (23) that

(r(t)z ′(t))′ + q(t)φ
([
cÃ(σ(t))π(γ(σ(t))) + Θ̃(σ(t))

]
+

)
≤ 0, t ≥ t1.

By integrating the above inequality over [t1, t] and letting as t →∞, we can lead to the contradiction. �

Corollary 2 Under the hypothesis (P2) and (H6) hold. If the condition (30) holds, then the differential inequality (21) has no
eventually positive solutions.

Proof. Let y(t) be an eventually positive solution of the differential inequality (12). Then there exists t1 ≥ t0 such that y(t) > 0
for t ≥ t1. We define the following function:

w̃(t) = y(t) + h(t)y(τ(t)) +

∫ ∞
t

p(s)

r(s)ρ′(s)
y(ρ(s))ds

for t ≥ t1. Substituting it into (12) we obtain

(r(t)w̃ ′(t))′ ≤ f (t), t ≥ t1.

By a similar proof of Theorem 7 we can show that

w̃(t) ≤ w̃(t1) + r(t1)w̃ ′(t1)
∫ t
t1

1

r(s)
ds +

∫ t
t1

1

r(s)

∫ s
f (u)duds.

Taking inferior limit as t →∞, it is easy to see that

0 ≤ lim inf
t→∞

w̃(t) ≤ −∞,

which contradicts and completes the proof. �

4. Oscillation criteria for the Eq. (E±) and examples

In this section we derive oscillation criteria for the equation (E±). Combining Theorems 1–8 and Corollaries 1–2, we establish

following oscillation results under the hypothesis:

(H7) there exists a function θ ∈ C2[t0,∞) such that rθ ∈ C1[t0,∞), (r(t)θ′(t))′ = F (t) and θ(t) is oscillatory;
(H8) there exists a function θ ∈ C2[t0,∞) such that rθ ∈ C1[t0,∞), (r(t)θ′(t))′ = F̃ (t) and θ(t) is oscillatory.

Finally, we discuss some examples which dwell upon the importance of our main results are given.

Theorem 9 Assume that (P1), (H4) and (H7) (or (H8)) hold. If conditions∫ ∞
t0

q(t)φ

([(
1− h(σ(t))−

∫ σ(t)
t0

p(s)

r(s)
ds

)
c ±Θ(σ(t))

]
+

)
dt =∞

holds, then every solution (E+), (B1) (or (E+), (B2)) is oscillatory in Ω.
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Theorem 10 Assume that (P1) and (H5), (H7) (or (H8)) hold. If conditions∫ ∞
t0

q(t)φ

([(
1− h(σ(t))−

∫ ∞
σ(t)

p(s)

r(s)
ds

)
c ± Θ̃(σ(t))

]
+

)
dt =∞

holds, then every solution (E−), (B1) (or (E−), (B2)) is oscillatory in Ω.

Theorem 11 Assume that (P2), (H4) and (H7) (or (H8)) hold. If conditions∫ ∞
t0

π(t)q(t)φ
(
[cA(σ(t))π(γ(σ(t)))±Θ(σ(t))]+

)
dt =∞

holds, then every solution (E+), (B1) (or (E+), (B2)) is oscillatory in Ω.

Corollary 3 Assume that (P2) and (H4) hold. If conditions

lim inf
t→∞

∫ t
t0

(π(t)− π(s))F (s)ds = −∞, (34)

lim sup
t→∞

∫ t
t0

(π(t)− π(s))F (s)ds =∞ (35)

hold, then every solution (E+), (B1) is oscillatory in Ω.

Corollary 4 Assume that (P2) and (H4) hold. If conditions

lim inf
t→∞

∫ t
t0

(π(t)− π(s))F̃ (s)ds = −∞, (36)

lim sup
t→∞

∫ t
t0

(π(t)− π(s))F̃ (s)ds =∞ (37)

hold, then every solution (E+), (B2) is oscillatory in Ω.

Theorem 12 Assume that (P2) and (H5), (H7) (or (H8)) hold. If conditions∫ ∞
t0

π(t)q(t)φ
([
cÃ(σ(t))π(γ(σ(t)))± Θ̃(σ(t))

]
+

)
dt =∞

holds, then every solution (E−), (B1) (or (E−), (B2)) is oscillatory in Ω.

Corollary 5 Assume that (P2) and (H6) hold. If conditions (34) and (35) hold, then every solution (E−), (B1) is oscillatory in

Ω.

Corollary 6 Assume that (P2) and (H6) hold. If conditions (36) and (37) hold, then every solution (E−), (B2) is oscillatory in

Ω.

This section concludes with some examples illustrating the main results stated above.

Example 1 Consider the problem

∂2

∂t2

(
u(x, t) +

1

4
e−tu(x, t − 2π)

)
+
1

2
e−t
∂

∂t
u(x, t − 3π/2) (38)

− ∆u(x, t) + 1
3
u(x, t − π) = −1

3
sin x cos t, (x, t) ∈ (0, π)× (t0,∞)

with boundary condition

u(0, t) = u(π, t) = 0, t ≥ 0. (39)

In this case r(t) = 1, h(t) = 1
4
e−t , p(t) = 1

2
e−t , q(x, t) = 5

3
, τ(t) = t − 2π, ρ(t) = t − 3π/2, σ(t) = t − π, f (x, t) =

− 1
3
sin x cos t. It is not difficult to see that the conditions of Theorem 9 are satisfied, since∫ ∞ 1

3

[(
1 +
1

4
e−t+π − 1

2
e−t0+π

)
c ±Θ(σ(t))

]
+

dt =∞,

where

Θ(σ(t)) =
π

12

(
− cos t + 1

4
e−t+π sin t +

1

2
e−t+π cos t +

1

4
e−t0 cos t0 +

1

4
e−t0 sin t0

)
Therefore every solutions of the problem (38), (39) oscillates in (0, π)× (t0,∞). For instance, u(x, t) = sin x cos t is such a
solution.
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Example 2 Consider the problem

∂

∂t

(
et
∂

∂t
(u(x, t) + hu(x, t − π))

)
− ∂
∂t
u(x, t)− e2t∆u(x, t)−

√
2(1− h)et∆u(x, t − π/2) (40)

+ e2tu(x, t − π) = − sin x cos t, (x, t) ∈ (0, π)× (1,∞)

with boundary condition

u(0, t) = u(π, t) = 0, t ≥ 0, (41)

where r(t) = et , h = e−π − e−ε, p(t) = 1, q(x, t) = e2t , τ(t) = t − π, ρ(t) = t, σ(t) = t − 2π, f (x, t) = − sin x cos t.
Obviously, the conditions of Theorem 12 are satisfied, since∫ ∞

et
[
c
(
e−π − h − e−t

)
e−t+π ± Θ̃(σ(t))

]
+
=∞

where

Θ̃(σ(t)) =
π

8

{
−(1 + heπ)(cos t − sin t)e−t+π + e−2t+2π

(
1

5
cos t +

3

5
sin t

)}
for some t0 > 0. But result of Tanaka [14] is not applicable to this problem since

1− h − log
(
π(τ(t))

π(t)

)
= 1− h − π < 0.

Therefore every solutions of problem (40), (41) oscillates in (0, π)× (t0,∞). In fact u(x, t) = sin x sin t is such a solution.

Example 3 Consider the problem

∂

∂t

(
t2
∂

∂t

(
u(x, t) +

1

t
u(x, t − 2π)

))
− ∂
∂t
u(x, t − 3π/2)− t∆u(x, t)− 2t∆u(x, t − π/2)

+ t2u(x, t − 2π) = sin x sin t, (x, t) ∈ (0, π)× (1,∞)

with boundary condition

u(0, t) = u(π, t) = 0, t ≥ 0, (42)

where r(t) = t2, h(t) = 1/t, p(t) = 1, q(x, t) = t2, τ(t) = t − 2π, ρ(t) = t, σ(t) = t − 2π, f (x, t) = − sin x sin t. Obviously,
the conditions of Theorem 12 are satisfied, since∫ ∞

t

[
c

(
1− 2π + 2
t − 2π

)(
1

t − 2π

)
± Θ̃(σ(t))

]
+

=∞

where

Θ̃(σ(t)) = −π
4

∫ t−2π
t0

cos s

s2
ds +

π/4

t − 4π

∫ t−2π
t0

cos s

s2
ds +

π

4

∫ ∞
t−2π

1

s2

∫ s−3π/2
s0

cos ξ

ξ2
dξds

for some t0 > 0. But Corollary 3 is not applicable to this problem since

lim
t→∞

∫ t
t0

(
1

t
− 1
s

)
· π
4
sin sds = −π

2

8
.

Therefore every solutions of problem (??), (42) oscillates in (0, π)× (t0,∞). In fact u(x, t) = sin x sin t is such a solution.

5. Conclusions

In previous results [1], Parhi and Chand established established some sufficient conditions under which every bounded solution

of linear neutral hyperbolic equations with delay either oscillates or tends to zero as t →∞. Therefore we showed oscillation
theorems for nonlinear neutral hyperbolic equations with delay.
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