
Research Article ISSN Online: 2783-4859 Computational Mathematics and Computer Modeling with Applications

Received 3 March 2025
Accepted 3 April 2025

DOI: 10.48308/CMCMA.4.1.1
AMS Subject Classification: 68T07; 34A34

A new rational Legendre neural network for
solving the Blasius equation
Mohammad Mohammadia, Yeganeh Ghaderia, Hassan Dana Mazraeha

and Kourosh Paranda,b

In this paper, we present a novel artificial neural network framework for solving the Blasius equation, a nonlinear ordinary
differential equation defined on a semi-infinite domain. Our experiments revealed that traditional activation functions, such
as Tanh and ReLU, did not produce satisfactory results. To address this, we employed custom activation functions based
on Rational Legendre polynomials, which demonstrated superior performance in approximating the solution. The results
highlight the effectiveness and potential of this approach, offering a valuable contribution to the scientific community for
addressing similar nonlinear differential equations. Copyright c⃝ 2025 Shahid Beheshti University.

Keywords: The Blasius equation; Rational Legendre polynomials; Neural network; Boundary-layer flow; Semi-
infinite domains; Nonlinear differential equations.

1. Introduction

The Blasius equation is a fundamental equation in fluid mechanics that describes the laminar, two-dimensional flow of an
incompressible viscous fluid over a flat surface. While much of the boundary layer may consist of turbulent regions with eddies
and fluctuations in flow parameters, the Blasius equation specifically arises from boundary layer theory, developed in the early 20th
century to analyze fluid behavior near solid boundaries.

The FalknerSkan equation, a nonlinear differential equation in fluid dynamics introduced by Falkner and Skan, represents a
broader class of equations derived from the NavierStokes equations. These equations are used to analyze boundary-layer flows
under specific conditions, typically for two-dimensional, steady flows over surfaces with defined shapes[32].

The Blasius equation is a special case of the FalknerSkan equations and remains one of the key equations in fluid mechanics
for describing boundary-layer flows near solid surfaces.

1.1. Form of the Blasius equation

By applying scaling arguments to the Navier–Stokes equations, many terms can be shown to be negligible under specific conditions,
leading to the simplified boundary layer equations. In fluid dynamics, the boundary layer forming near a flat plate with fluid moving
over it can be described using boundary layer conditions and corresponding initial conditions [19, 22, 39].

∂u

∂x
+ ∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
= 1

ρ

∂p

∂x
+ v

∂2u

∂y2 . (2)

The flat plate problem is subject to the following conditions:

a Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran.
b Department of Cognitive Modeling, Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran.
∗Correspondence to: K. Parand. Email: k parand@sbu.ac.ir

Comput. Math. Comput. Model. Appl. 2025, Vol. 4, Iss. 1, pp. 1–9 Copyright c⃝ 2025 Shahid Beheshti University.



Computational Mathematics and Computer Modeling with Applications M. Mohammadi et al.

u(0, y) = u∞, (3)
u(x, ∞) = u∞,

u(x, 0) = v(x, 0) = 0.

Introducing the dimensionless similarity variable η and performing further manipulations [32] yields the following form:

f ′′′(η) + 1
2f(η)f ′′(η) + β

[
1 − f ′2(η)

]
= 0, η ∈ (0, ∞) (4)

The conditions are as follows:

f(0) = f ′(0) = 0, f ′(∞) = 1. (5)

For a simplified form, the Blasius equation can also be expressed as:

f ′′′(η) + 1
2f(η)f ′′(η) = 0, η ∈ (0, ∞). (6)

With conditions identical to those stated in Eq. (5).
In Eq.(4), the nonlinear term reflects the effects of friction in the boundary layer and is applicable under certain turbulent

conditions. However, in this paper, we focus on the standard form of the Blasius equation (Eq.(6)), which is valid for steady flows
in smooth boundary layers.

2. Related Works

Various approaches have been proposed to solve problems on infinite domains[3, 6, 43]. Among these, spectral methods are
particularly well-regarded [1, 20, 36, 44]. Boyd [9] investigated some of these spectral methods on semi-infinite domains, Guo
[15, 16] employed Jacobi and Gegenbauer collocation, and Shen [23] studied Hermite spectral methods.

On unbounded intervals, numerous numerical methods have been used [18, 22, 24, 40, 46]. In recent years, artificial neural
networks have gained traction for solving differential equations owing to their convergence properties and fast runtime. By the
universal approximation theorem, neural networks can approximate any continuous function to an arbitrary level of precision [32].
Since the late 1990s, machine learning techniques have been employed to solve differential equations [13, 21, 28], and hybrid
methods combining machine learning with optimization have been applied to higher-order ODEs [29, 35, 47]. Researchers have
also adopted neural networks for specific differential equation problems [10, 28, 34, 41]. In studies [25, 26], researchers integrated
context-free grammars with deep reinforcement learning networks and genetic programming to analytically solve the Blasius
equation and other nonlinear equations. Additionally, in [27, 11, 8, 12], these types of equations were applied to various artificial
intelligence algorithms, including neural networks and meta-heuristic algorithms.

The authors in [30, 31, 42, 7] have pioneered the use of neural networks and deep neural networks to solve differential equations
on unbounded domains. Gao [14] utilized convolutional neural networks for parameterized steady-state PDEs on irregular domains.

Least-squares support vector regression (LS-SVR) is another powerful machine learning technique that has been successfully
used to tackle nonlinear differential equations. This method has been extensively applied to address engineering problems and other
complex challenges in [5, 33, 37, 38]. In this paper, we employ fractional Legendre polynomials as activation functions in neural
networks to approximate the solution of the Blasius equation.

3. Backgrounds

Legendre polynomials constitute a classical family of orthogonal polynomials that arise as solutions to Legendres differential
equation. Their orthogonality and recurrence properties make them indispensable in various fields, including potential theory,
approximation theory, and numerical analysis [2, 45].

The recursive formula of the Legendre polynomials is as follows:

Pn+1(x) = 2n + 1
n + 1 xPn(x) − n

n + 1Pn−1(x), n > 1, (7)

The initial conditions are as follows:

P0(x) = 1 , P1(x) = x. (8)

2 Copyright c⃝ 2025 Shahid Beheshti University. Comput. Math. Comput. Model. Appl. 2025, Vol. 4, Iss. 1, pp. 1–9



M. Mohammadi et al. Computational Mathematics and Computer Modeling with Applications

Table 1 lists the expressions for the first nine Legendre polynomials, which form the foundation of many spectral and numerical
methods.

Table 1. Legendre Polynomials.

n Pn(x)
0 1
1 x

2 1
2 (3x2 − 1)

3 1
2 (5x3 − 3x)

4 1
8 (35x4 − 30x2 + 3)

5 1
8 (63x5 − 70x3 + 15x)

6 1
16 (231x6 − 315x4 + 105x2 − 5)

7 1
16 (429x7 − 693x5 + 315x3 − 35x)

8 1
16 (6435x8 − 12012x6 + 6930x4 − 1260x2 + 35)

For many applications, especially those involving differential equations on unbounded domains, it is advantageous to map the
infinite domain to a finite interval. A common mapping is to substitute x with x−L

x+L
, where L ∈ R. This transformation leads

to the construction of Rational Legendre polynomials, which inherit many of the favorable properties of the classical Legendre
polynomials while being better suited for approximating functions on semi-infinite domains [17]. Table 2 presents the first nine
Rational Legendre polynomials derived from this transformation.

Table 2. Rational Legendre Polynomials.

n Rn(x) = Pn

(
x−L
x+L

)
0 1

1 x−L
x+L

2 1
2

(
3
(

x−L
x+L

)2
− 1

)
3 1

2

(
5
(

x−L
x+L

)3
− 3

(
x−L
x+L

))
4 1

8

(
35

(
x−L
x+L

)4
− 30

(
x−L
x+L

)2
+ 3

)
5 1

8

(
63

(
x−L
x+L

)5
− 70

(
x−L
x+L

)3
+ 15

(
x−L
x+L

))
6 1

16

(
231

(
x−L
x+L

)6
− 315

(
x−L
x+L

)4
+ 105

(
x−L
x+L

)2
− 5

)
7 1

16

(
429

(
x−L
x+L

)7
− 693

(
x−L
x+L

)5
+ 315

(
x−L
x+L

)3
− 35

(
x−L
x+L

))
8 1

16

(
6435

(
x−L
x+L

)8
− 12012

(
x−L
x+L

)6
+ 6930

(
x−L
x+L

)4
− 1260

(
x−L
x+L

)2
+ 35

)

4. Methodology

In this section, we describe the core architecture of our proposed neural network approach and outline the training procedure used
to solve the target boundary-value problem. The implementation is based on the PyTorch framework, and we experimented with
multiple optimization strategies (e.g., Adam, SGD, etc.) to evaluate both convergence speed and solution accuracy. Empirical
tests revealed that Adam provides a balanced trade-off between rapid convergence and model performance, making it our primary
choice.Finally, the codes modular design makes it easy to add custom loss functions and specific boundary conditions.

4.1. Rational Legendre Neural Network

The architecture of our network consists of 5 layers, described as follows:

• One input layer with 1 neuron,
• Two hidden layers (h1 and h2) with 9 neurons each, using the Tanh activation function,
• One hidden layer (h3) with 9 neurons, employing a custom Rational Legendre activation function,
• One output layer with 1 neuron.

Comput. Math. Comput. Model. Appl. 2025, Vol. 4, Iss. 1, pp. 1–9 Copyright c⃝ 2025 Shahid Beheshti University. 3



Computational Mathematics and Computer Modeling with Applications M. Mohammadi et al.

.

.Input

.tanh

.tanh

.tanh

.

...
.tanh

.tanh

.tanh

.tanh

.tanh

.tanh

.

...
.tanh

.tanh

.tanh

.R1

.R2

.R3

.

...
.R7

.R8

.R9

.Output

Figure 1. The structure of feed-forward neural network.

We chose the Tanh activation function for all neurons in the first two hidden layers for the following reasons:

1. Nonlinearity: Nonlinear differential equations inherently require nonlinear modeling. The Tanh function, being a nonlinear
activation function, enables the neural network to effectively learn complex and nonlinear patterns.

2. Domain Constraint: The Tanh function outputs values constrained to the range [ -1 , 1 ] , which helps stabilize the network
during training.

3. Differentiability: The Tanh function has continuous and easily computable derivatives, a crucial property for optimization
algorithms like backpropagation.

Rational Legendre polynomials are employed as activation functions in the third hidden layer to leverage their ability to
approximate functions over semi-infinite domains. Each polynomial is assigned to a single neuron. Specifically, the first neuron uses
the first Rational Legendre polynomial, the second neuron uses the second Rational Legendre polynomial, and so on, up to the
ninth neuron, which uses the ninth Rational Legendre polynomial.

After defining an appropriate loss function and employing the Adam optimizer, we trained the network for a specified number
of epochs (e.g., 20,000). This framework facilitates a rapid and accurate approximation of the Blasius solution.

4.2. Parameter Tuning and Implementation Details

In practice, we followed these steps to obtain the solution:

1. Data Preparation: We generated (or used) a small set of reference data points for the Blasius solution, which were then
loaded in batches during training. These data points primarily guided the network to match known solution values at selected
locations.

2. Architecture Setup: As outlined earlier, the network consists of four layers:

• One input layer (1 neuron),
• Two hidden layers (h1 and h2), each with 9 neurons and Tanh activation,
• One hidden layer (h3) with 9 neurons, where each neuron employs a different Rational Legendre polynomial as its

activation function,
• One output layer (1 neuron), incorporating an additional constant shift (denoted as +1.0 in Figure 1). Without this

constant shift, the model tends to converge to zero to minimize the residual and initial losses. To prevent this undesired
behavior and ensure a more meaningful solution, we introduce a +1 constant shift to the output of the network.

3. Differential Equation Residual: In addition to fitting the known data points, we minimized the residual of the Blasius
differential equation:

f ′′′(η) + 1
2f(η)f ′′(η) = 0,

subject to the conditions f(0) = 0, f ′(0) = 0, and f ′(∞) ≈ 0.99. This ensures that the network’s output aligns with both
the available data and the governing physical model.

4. Parameter Tuning:

• Number of Layers and Neurons: We experimented with various architectures and found that three hidden layers with
9 neurons each provided an optimal balance between accuracy and computational efficiency.

4 Copyright c⃝ 2025 Shahid Beheshti University. Comput. Math. Comput. Model. Appl. 2025, Vol. 4, Iss. 1, pp. 1–9



M. Mohammadi et al. Computational Mathematics and Computer Modeling with Applications

• The Role of L in Rational Legendre Polynomials: The parameter L in the transformation
(

x−L
x+L

)
dictates how the

semi-infinite domain is mapped to a finite interval and influences the polynomial’s behavior. After testing different
values (L = 1 to 4), we found that L = 4 resulted in the most accurate approximation of the Blasius solution. Larger
values of L generally improved the solution’s accuracy by extending the range where the polynomials effectively capture
the function behavior, enhancing alignment with conditions and training data.

4.3. Loss Function and Training

In order to solve the Blasius equation, we consider two main components in our total loss:
1. Residual Loss (Lossres): Ensures that the network output f̂(η) satisfies the differential equation

f ′′′(η) + 1
2f(η)f ′′(η) = 0.

In practice, we sample points {ηi} and enforce the ODE residual as follows:

Lossres =
n∑

i=1

(
f̂ ′′′(ηi) + 1

2 f̂(ηi)f̂ ′′(ηi)
)2

.
2. Conditions Losses (LossCs): We impose the conditions f(0) = 0, f ′(0) = 0, and f ′(∞) = 1. These appear as mean-squared

constraints, such as:
LossCs =

(
f(0)

)2 +
(
f ′(0)

)2 +
(
f ′(∞) − 1

)2
.

In this study, to handle the infinity condition in
(
f ′(∞) − 1

)2, we have used a very large number α in the PyTorch package.
Therefore, instead of

(
f ′(∞) − 1

)2, we have used
(
f ′(α) − 1

)2 in the construction of the loss function. Hence, the total loss
Losstotal can be written as:

Losstotal = λ1Lossres + λ2 LossCs

where λ1 and λ2 are weighting coefficients that balance the ODE residual and conditions loss. In this stydy, parameter λ1 and λ2

are introduced to balance these different loss terms, which may have varying magnitudes or importance depending on the problem.
Without proper weighting, one term could dominate the optimization process, leading to poor convergence or solutions that violate
certain physical constraints.

5. Results

In this section, numerical results are presented for solving the Blasius equation using the method described in Section 4.1, which
has been implemented with the PyTorch library in Python. We compare the values of f(η), f ′(η), and f ′′(η) for various η with
those obtained by other methods.

Table 3. Comparison of f ′′(0) between the present method and various methods

Number of layers Present method Pakniyat [32] Parand [39] Howarth [19] Rafael [40] LCDNN [4] LDNN [4]
[1, 9, 9, 9, 1] 0.332057102 0.332057335 0.33206 0.33206 0.33206 0.3320590 0.3321312

Table 4. Comparison of f(η) values between the present method and various methods

η Present Pakniyat [32] Parand [39] Howarth [19] Rafael [40]
1.0 0.17191576 0.16541105 0.1655731 0.16557 0.16557
2.0 0.65599083 0.64967773 0.6500351 0.65002 0.65003
3.0 1.39814352 1.39647618 1.3968254 1.39681 1.39682
4.0 2.29890894 2.30574561 2.3057619 2.30575 2.30576
5.0 3.26717567 3.28384346 3.2832913 3.28327 3.28330
6.0 4.25438499 4.28098773 4.2796473 4.27962 4.27965

Table 5. Comparison of f ′(η) values between the present method and various methods

η Present Pakniyat [32] Parand [39] Howarth [19] Rafael [40]
1.0 0.33214044 0.329566712 0.3297956 0.32979 0.32978
2.0 0.62707352 0.629571785 0.6297737 0.62977 0.62977
3.0 0.83942985 0.846109525 0.8460586 0.84605 0.84605
4.0 0.94632434 0.956103098 0.9555253 0.95552 0.95552
5.0 0.98240298 0.992407319 0.9915583 0.99155 0.99155
6.0 0.98969644 0.999894820 0.9989882 0.99898 0.99898

Comput. Math. Comput. Model. Appl. 2025, Vol. 4, Iss. 1, pp. 1–9 Copyright c⃝ 2025 Shahid Beheshti University. 5



Computational Mathematics and Computer Modeling with Applications M. Mohammadi et al.

Table 6. Comparison of f ′′(η) values between the present method and various methods

η Present Pakniyat [32] Parand [39] Howarth [19] Rafael [40]
0.0 0.33176034 0.332057102 0.332057335 0.33206 0.33206
1.0 0.31695914 0.322884293 0.3230174 0.32301 0.32301
2.0 0.26285910 0.266958108 0.2667514 0.26675 0.26675
3.0 0.15745177 0.161256399 0.1613615 0.16136 0.16136
4.0 0.06335017 0.063990964 0.0642426 0.06424 0.06423
5.0 0.01621076 0.016547122 0.0159142 0.01591 0.01591
6.0 0.00190105 0.003129914 0.0024067 0.00240 0.00240

Figure 2. A comparison of the values of f(η) obtained using the present method with those reported by other researchers, including Pakniyat [32], Parand [39],
Howarth [19], and Rafael [40]..

Figure 3. A comparison of the values of f ′(η) obtained using the present method with those reported by other researchers, including Pakniyat [32], Parand [39],
Howarth [19], and Rafael [40]..

6 Copyright c⃝ 2025 Shahid Beheshti University. Comput. Math. Comput. Model. Appl. 2025, Vol. 4, Iss. 1, pp. 1–9



M. Mohammadi et al. Computational Mathematics and Computer Modeling with Applications

Figure 4. A comparison of the values of f ′′(η) obtained using the present method with those reported by other researchers, including Pakniyat [32], Parand [39],
Howarth [19], and Rafael [40]..

6. Conclusions

In this paper, we proposed a novel approach for solving the Blasius equation, utilizing Rational Legendre polynomials as activation
functions in a neural network framework. The primary contribution of this work lies in the ability to handle semi-infinite domains
effectively while achieving high accuracy and rapid convergence. By integrating Rational Legendre polynomials into the network
architecture, we demonstrated a significant improvement over traditional methods.

The numerical results presented in this paper confirm the effectiveness of the proposed method. Our framework not only
satisfies the conditions of the Blasius equation but also yields results that are highly comparable to those obtained by other
advanced methods. Additionally, incorporating Tanh activation functions in the initial layers ensures the stability and nonlinearity
necessary for solving complex differential equations.

PINNs have shown considerable potential for tackling both forward and inverse problems related to differential equations, yet
they face notable limitations. A key difficulty lies in the extensive tuning of hyperparameters, especially in intricate, high-dimensional
scenarios, where suboptimal settings can make training computationally costly. Additionally, their effectiveness in inverse problems
heavily depends on access to high-quality training data, and performance may suffer when confronted with noisy or partial datasets.
Looking ahead, research should prioritize enhancing training efficiency by adopting advanced optimization methods, such as dynamic
learning rate adjustments or meta-learning techniques. Creating hybrid approaches that combine PINNs with conventional numerical
solvers or multi-fidelity frameworks could improve their precision and adaptability. Moreover, investigating more resilient network
designs could address these limitations.

References

1. M. Abbazadeh, M. Bayat, M. Dehghan, and M. I. Azis. Investigation of generalized couette hydromagnetic flow of two-step exothermic
chemical reaction in a channel via the direct meshless local PetrovGalerkin method. Engineering Analysis with Boundary Elements,
125:178–189, 2021.

2. M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Dover Publications, 1964.
3. A. A. Aghaei and K. Parand. Hyperparameter optimization of orthogonal functions in the numerical solution of differential equations.

Mathematical Methods in the Applied Sciences, 48(1):605–625, 2025.
4. A. A. Aghaei, K. Parand, A. Nikkhah, and S. Jaberi. Solving Falkner-Skan type equations via Legendre and Chebyshev neural blocks.

arXiv, page arXiv:2308.03337, 2023.
5. P. Ahadian and K. Parand. Support vector regression for the temperature-stimulated drug release. Chaos, Solitons & Fractals, 165:112871,

2022.
6. M. A. Arefin, M. A. Nishu, M. N. Dhali, and M. H. Uddin. Analysis of reliable solutions to the boundary value problems by using shooting

method. Mathematical Problems in Engineering, 2022:1–9, 2022.
7. F. Baharifard and K. Parand. Numerical solution of differential equations of Lane-Emden type by Gegenbauer and rational Gegenbauer

collocation methods. Computational Mathematics and Computer Modeling with Applications (CMCMA), 1(1):69–85, 2022.
8. M. Bolhassani, H. D. Mazraeh, and K. Parand. A new method based on least-squares support vector regression for solving optimal

control problems. Kybernetika, 60:513–534, 2024.

Comput. Math. Comput. Model. Appl. 2025, Vol. 4, Iss. 1, pp. 1–9 Copyright c⃝ 2025 Shahid Beheshti University. 7



Computational Mathematics and Computer Modeling with Applications M. Mohammadi et al.

9. J. P. Boyd. Chebyshev and Fourier Spectral Methods. Dover Publications, Mineola, New York, 2000.
10. F. Calabrò, G. Fabiani, and C. Sieos. Extreme learning machine collocation for the numerical solution of elliptic PDEs with sharp

gradients. Computer Methods in Applied Mechanics and Engineering, 387:114188, 2021.
11. H. Dana Mazraeh, K. Parand, H. Farahani, and S. Kheradpisheh. An improved imperialist competitive algorithm for solving an inverse

form of the Huxley equation. Iranian Journal of Numerical Analysis and Optimization, 14(Issue 3):681–707, 2024.
12. A. N. Firoozsalari, H. D. Mazraeh, A. A. Aghaei, and K. Parand. deepFDEnet: A Novel Neural Network Architecture for Solving Fractional

Differential Equations, 2023.
13. M. Frank, D. Drikakis, and V. Charissis. Machine-learning methods for computational science and engineering. Computation, 8(1):1–35,

2020.
14. H. Gao, L. Sun, and J. X. Wang. Phygeonet: Physics-informed geometry-adaptive convolutional neural networks for solving parameterized

steady-state PDEs on irregular domain. Journal of Computational Physics, 428:110079, 2021.
15. B. Guo. Gegenbauer approximation and its applications to differential equations with rough asymptotic behaviors at infinity. Applied

Numerical Mathematics, 38:403–425, 2001.
16. B. Y. Guo. Jacobi approximations in certain Hilbert spaces and their applications to singular differential equations. Journal of

Mathematical Analysis and Applications, 243:373–408, 2000.
17. B. Y. Guo and Z. Wang. A spectral method for differential equations on unbounded domains using rational Legendre functions. Journal

of Computational Physics, 173(2):387–404, 2002.
18. Z. Hajimohammadi, F. Baharifard, and K. Parand. A new numerical learning approach to solve general Falkner Skan model. Engineering

with Computers, 38:121–137, 2022.
19. L. Howarth. On the calculation of steady flow in the boundary layer near the surface of a cylinder in a stream. Aero Res. Counc. Lond.

R & M, 164:16–32, 1935.
20. A. Jalilian, A. A. bdi, and G. Hojjat. Variable stepsize SDIMSIMs for ordinary differential equations. Applied Numerical Mathematics,

168:115–126, 2021.
21. A. Kratsios. The universal approximation property: characterization, construction, representation, and existence. Annals of Mathematics

and Artificial Intelligence, 89:435–469, 2021.
22. S. J. Liao. An explicit, totally analytic approximate solution for Blasius viscous flow problems. International Journal of Non-Linear

Mechanics, 34(4):759–778, 1999.
23. Z. Mao and J. Shen. Hermite spectral methods for fractional PDEs in unbounded domains. SIAM Journal on Scientific Computing,

39(5):A1928–A1950, 2017.
24. H. D. Mazraeh, M. Kalantari, S. H. Tabasi, A. A. Aghaei, Z. Kalantari, and F. Fahim. Solving Fredholm integral equations of the second

kind using an improved cuckoo optimization algorithm. Global Analysis and Discrete Mathematics, 7(1):33–52, 2023.
25. H. D. Mazraeh and K. Parand. GEPINN: an innovative hybrid method for a symbolic solution to the LaneEmden type equation based

on grammatical evolution and physics-informed neural networks. Astronomy and Computing, 48:100846, 2024.
26. H. D. Mazraeh and K. Parand. An innovative combination of deep Q-networks and context-free grammars for symbolic solutions to

differential equations. Engineering Applications of Artificial Intelligence, 142:109733, 2025.
27. H. D. Mazraeh, K. Parand, M. Hosseinzadeh, J. Lansky, and V. Nulíek. An improved water strider algorithm for solving the inverse

Burgers Huxley equation. Scientific Reports, 2024.
28. C. Michoski, M. Milosavljevi, T. Oliver, and D. R. Hatch. Solving differential equations using deep neural networks. Neurocomputing,

399:193–212, 2020.
29. M. B. Milovanovic, D. S. Anti, S. S. Nikoli, S. L. Peric, M. T. Milojkovi, and M. D. Spasic. Neural network based on orthogonal

polynomials applied in magnetic levitation system control. Elektronika ir elektrotechnika, 23(3):24–29, 2017.
30. M. M. Moayeri, J. A. Rad, and K. Parand. Dynamical behavior of reaction-diffusion neural networks and their synchronization arising in

modeling epileptic seizure: A numerical simulation study. Computers & Mathematics with Applications, 80(8):1887–1927, 2020.
31. M. Omidi, B. Arab, A. H. Rasanan, J. A. Rad, and K. Parand. Learning nonlinear dynamics with behavior ordinary/partial/system of

the differential equations: looking through the lens of orthogonal neural networks. Engineering with Computers, pages 1–20, 2021.
32. A. Pakniyat and K. Parand. Hermite neural network for solving the Blasius equation. Computational Mathematics and Computer

Modeling with Applications (CMCMA), 1:86–94, 2022.
33. A. Pakniyat, K. Parand, and M. Jani. Least squares support vector regression for differential equations on unbounded domains. Chaos,

Solitons & Fractals, 151:111232, 2021.
34. N. Panda, M. G. Fernndez-Godino, H. C. Godinez, and C. Dawson. A data-driven non-linear assimilation framework with neural networks.

Computational Geosciences, 25(1):233–242, 2021.
35. K. Parand, A. A. Aghaei, M. Jani, and A. Ghodsi. A new approach to the numerical solution of Fredholm integral equations using least

squares-support vector regression. Mathematics and Computers in Simulation, 180:114–128, 2021.
36. K. Parand, A. A. Aghaei, M. Jani, and A. Ghodsi. Parallel LS-SVM for the numerical simulation of fractional Volterras population model.

Alexandria Engineering Journal, 60(6):5637–5647, 2021.
37. K. Parand, G. S. Ghaemi Javid, and M. Jani. A machine learning approach for solving inverse Stefan problem. International Journal of

Nonlinear Analysis and Applications, 13(2):2233–2246, 2022.
38. K. Parand, M. Razzaghi, R. Sahleh, and M. Jani. Least squares support vector regression for solving Volterra integral equations.

Engineering with Computers, 38:789796, 2022.
39. K. Parand and A. Taghavi. Rational scaled generalized laguerre function collocation method for solving the Blasius equation. Journal

of Computational and Applied Mathematics, 233(4):980–989, 2009.
40. C. Rafael. Numerical solutions of the classical blasius flat-plate problem. Applied Mathematics and Computation, 170:706–710, 2005.
41. M. Raissi and G. E. Karniadakis. Hidden physics models: Machine learning of nonlinear partial differential equations. Journal of

Computational Physics, 357:125–141, 2018.
42. A. H. Rasanan, D. Rahmati, S. Gorgin, and K. Parand. A single layer fractional orthogonal neural network for solving various types of

LaneEmden equation. New Astronomy, 75:101307, 2020.
43. F. Salehi, S. H. Shahraki, M. K. Fallah, and M. Hemamia. Numerical investigation of differential biological models via Gaussian RBF

collocation method with genetic strategy. Computational Mathematics and Computer Modeling with Applications, 1(2):46–64, 2022.

8 Copyright c⃝ 2025 Shahid Beheshti University. Comput. Math. Comput. Model. Appl. 2025, Vol. 4, Iss. 1, pp. 1–9



M. Mohammadi et al. Computational Mathematics and Computer Modeling with Applications

44. J. Shen, T. Tang, and L.-L. Wang. Spectral Methods: Algorithms, Analysis and Applications. Springer, New York, 2011.
45. G. Szegö. Orthogonal Polynomials. American Mathematical Society, 4th edition, 1975.
46. M. H. Uddin, M. A. Arefin, M. A. Akbar, and M. Inc. New explicit solutions to the fractional-order Burgers equation. Mathematical

Problems in Engineering, 2021:1–11, 2021.
47. N. Vukovic, M. Petrovic, and Z. Miljkovic. A comprehensive experimental evaluation of orthogonal polynomial expanded random vector

functional link neural networks for regression. Applied Soft Computing, 70:1083–1096, 2018.

Comput. Math. Comput. Model. Appl. 2025, Vol. 4, Iss. 1, pp. 1–9 Copyright c⃝ 2025 Shahid Beheshti University. 9


	1 Introduction
	1.1 Form of the Blasius equation

	2 Related Works
	3 Backgrounds
	4 Methodology
	4.1 Rational Legendre Neural Network
	4.2 Parameter Tuning and Implementation Details
	4.3 Loss Function and Training

	5 Results
	6 Conclusions

