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A fully discretization approach for nonlinear
Phi-four equations

Mohammad Ali Mehrpouyaa

In this paper, a fully discretization approach is established for accurate and efficient solution of nonlinear time-dependent

Phi-four equations arising in particle physics and quantum mechanics. In the suggested approach, the lobatto pseudospectral

method is used to discretize the desired problem. So, the Phi-four equation is converted into a set of nonlinear algebraic

equations. The primary benefit of the suggested approach is that, it produces excellent results with just few discretization

points and has a fast rate of convergence. Numerical results are showcased to verify the precision and effectiveness of the

suggested approach for solving nonlinear Phi-four equations. Copyright c⃝ 2024 Shahid Beheshti University.
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1. Introduction

Numerous problems in the examination of theoretical physics stem from the famous nonlinear Klein-Gordon equation, which is

structured as

utt(x, t) = uxx(x, t) + h(u(x, t)) + s(x, t),

where, u(x, t) denotes the wave displacement at position x and time t, while h(u(x, t)) stands for a nonlinear force. In the

present paper, we are going to study a special and best-known case of the Klein-Gordon equation called the nonlinear Phi-four

equation. Actually, we deal with the numerical approximation of the nonlinear time-dependent Phi-four equation, which has the

form

utt(x, t) = λ1uxx(x, t) + λ2u(x, t) + λ3u
α(x, t) + s(x, t), (x, t) ∈ Ω× [0, T ], (1)

where, λ1, λ2, λ3 and α are constants and Ω = {x : A ≤ x ≤ B}. The associated boundary and initial conditions are respectively
given by

u(A, t) = f1(t), u(B, t) = f2(t), (2)

u(x, 0) = g1(x), ut(x, 0) = g2(x), x ∈ Ω. (3)

The nonlinear Phi-four equations have been used to describe diverse phenomena, such as the interaction between kink and

antikink solitary waves in particle physics [2] or the model phenomenon in relativistic quantum mechanics [4]. There have been

few methods in the literature to address the Phi-four equations. Chowdhury and Biswas [4] approximated the singular soliton

solution of the Phi-four equation using the ansatz method. This approach converts the nonlinear Phi-four equation, a partial

differential equation, into a set of ordinary differential equations (ODEs) in time using a spectral method whose basis functions are

rational Chebyshev functions. Then, the obtained system of ODEs can be solved using any standard numerical ODE integration

algorithm. In a similar manner, Bhrawy et al. [2] transformed the solution of nonlinear Phi-four equation to the solution of a set

of ODEs in time using an orthogonal collocation method based on the Jacobi polynomials. In [9], various explicit and implicit

finite difference methods of fourth and sixth orders are presented to address the Phi-four equation. In [32] and [31], a cubic and

trigonometric B-spline collocation methods are utilized respectively for numerical solution of the Phi-four equation. Arora and

Bhatia [1] presented a computational method which is based on radial basis function pseudospectral method. Their approach

involves employing radial basis functions to discretize the space derivatives in the Phi-four equation. Next, the Phi-four equation

is converted into a set of ODEs that can be solved using an ODE-solver. Recently Mehboob Ul Haq et al. [12] developed a
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numerical scheme based on using non-polynomial spline for the solution of the Phi-four equation. However, in addition to the

mentioned numerical methods, some analytical and semi-analytical methods have been reported to solve some special variants

of the Phi-four equation, which we can refer the interested readers to Wazwaz and Triki [30], Najafi [25], Demiray and Bulut

[8] and khater et al. [15].

The goal of this study is to employ the lobatto pseudospectral method to solve the nonlinear Phi-four equation numerically.

Pseudospectral methods are advanced tools for solving ordinary and partial differential equations [3, 11, 7, 14]. It is worth

mentioning that, the Lobatto pseudospectral method utilizes the Legendre-Gauss-Lobatto (LGL) points in its application as an

orthogonal collocation technique. Many applications of this type of pseudospectral methods have been reported in solving partial

differential equations. For instances, we can refer the interested readers to the works done in [19, 17, 16, 18, 29, 5, 28]. In

cases where a smooth problem and its solution need to be accurately solved on a simple domain, the pseudospectral methods

are typically the most effective tool. The characteristic feature of these methods is that, with a small number of discretization

points, they succeed in achieving very high accuracies.

2. The proposed method

In this section, we introduce the lobatto pseudospectral method for solving the nonlinear Phi-four equation (1), while also

considering the boundary and initial conditions specified in Eqs. (2) and (3). The proposed method consists of two parts. First,

it is important to think about a suitable finite depiction of the solution to equation (1). This part of the method is done with

the help of polynomial interpolation of solution based on using the LGL points. The next part involves deriving a set of algebraic

equations by discretizing Eqs. (1)-(3) at the collocation points.

Denote the Legendre polynomials of degree n and m as Pn and Pm, respectively. The renowned Legendre polynomials are

popular polynomials defined on the interval [−1,+1] and have demonstrated success in approximating functions over finite
intervals [22, 24, 13, 21, 27, 20, 23]. Now, suppose that {ηi}ni=0 and {θj}mj=0 denote the LGL points, in which η0 = −1,
θ0 = −1, ηn = +1, θn = +1 and for 1 <= i <= n − 1, 1 <= j <= m − 1, ηi and θj are the zeros of Ṗn(x) = d

dx
Pn(x) and

Ṗm(t) =
d
dt
Pm(t), respectively. So, a function of two variables H (x, t) : [a, b]× [t0, tf ]→ R can be approximated by

H (x, t) ≃
n∑
i=0

m∑
j=0

ci ,jϕi

(2x − (b + a)
b − a

)
φj

(2t − (tf + t0)
tf − t0

)
, (4)

where,

ci ,j =H
( (b − a)ηi + (b + a)

2
,
(tf − t0)θj + (tf + t0)

2

)
,

and ϕi(x), i = 0, . . . , n, and φj(t), j = 0, . . . , m, are the Lagrange polynomials which are based on {ηi}ni=0 and {θj}mj=0, that are
established by

ϕi(x) =

n∏
k=0,k ̸=i

x − ηk
ηi − ηk

, i = 0, . . . , n,

φj(t) =

m∏
l=0,l ̸=j

t − θl
θj − θl

, j = 0, . . . , m,

and have the Kronecker property

ϕi(ηk) =

{
0, if i ̸= k,
1, if i = k,

(5)

φj(θl) =

{
0, if j ̸= l ,
1, if j = l .

(6)

Now, with the knowledge of how to approximate a function of two variables in this method, we are ready to use the

lobatto pseudospectral method for discretizing the problem (1)-(3). To achieve this goal, the problem’s solution (uex(x, t))

is approximated with uapp(x, t) using Eq. (4). So, we have

uapp(x, t) ≃
n∑
i=0

m∑
j=0

ci ,jϕi

(2x − (B + A)
B − A

)
φj

( 2
T
t − 1

)
. (7)

It is noted that, there are (n + 1)× (m + 1) unknown coefficients ci ,j in the Eq. (7), which should be obtained. Now, substituting
uapp(x, t) to the nonlinear Phi-four equation (1), we have

R(x, t) =
∂

∂t2
uapp(x, t)− λ1

∂

∂x2
uapp(x, t)− λ2uapp(x, t)− λ3uαapp(x, t)− s(x, t). (8)
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Recognizing that, R is the residual function and minimizing it, is crucial. In this study, the collocation method is applied to a

set of LGL points in order to make the residual vanishes pointwisely. Now, collocating the residual function R(x, t) at the points

(η̂i , θ̂j), i = 1, . . . , n − 1, j = 1, . . . , m − 1, where {η̂0, η̂1, . . . , η̂n} and {θ̂0, θ̂1, . . . , θ̂m} are shifted LGL points to the intervals
[A,B] and [0, T ] respectively, (n − 1)× (m − 1) algebraic equations which is demanded to find the unknown coefficients ci ,j is
obtained as

∂

∂t2
uapp(η̂i , θ̂j)− λ1

∂

∂x2
uapp(η̂i , θ̂j)− λ2uapp(η̂i , θ̂j)− λ3uαapp(η̂i , θ̂j)− s(η̂i , θ̂j) = 0, i = 1, . . . , n − 1, j = 1, . . . , m − 1, (9)

and of course additional algebraic equations must be derived from the boundary and initial conditions (2) and (3). In a comparable

manner, to discretize the boundary and initial conditions in Eqs. (2) and (3), we have

uapp(A, θ̂p)− f1(θ̂p) = 0, p = 1, . . . , m − 1, (10)

uapp(B, θ̂p)− f2(θ̂p) = 0, p = 1, . . . , m − 1, (11)

uapp(η̂q, 0)− g1(η̂q) = 0, q = 1, . . . , n − 1, (12)

∂

∂t
uapp(η̂q, 0)− g2(η̂q) = 0, q = 1, . . . , n − 1, (13)

and therefore, 2(m − 1) + 2(n − 1) other algebraic equations are also provided to find the coefficients ci ,j . The only thing that
needs to provide the remaining 4 algebraic equations. Here, using boundary conditions (2), we have

uapp(A, θ̂0)− f1(θ̂0) = 0, (14)

uapp(A, θ̂n)− f1(θ̂n) = 0, (15)

uapp(B, θ̂0)− f2(θ̂0) = 0, (16)

uapp(B, θ̂n)− f2(θ̂n) = 0. (17)

Finally, (n − 1)× (m − 1) equations (9) beside 2(m − 1) + 2(n − 1) equations in (10)-(13) further 4 equations in (14)-(17)
form the following system of nonlinear algebraic equations

∂
∂t2
uapp(η̂i , θ̂j)− λ1 ∂∂x2 uapp(η̂i , θ̂j)− λ2uapp(η̂i , θ̂j)− λ3u

α
app(η̂i , θ̂j)− s(η̂i , θ̂j) = 0, i = 1, . . . , n − 1, j = 1, . . . , m − 1,

uapp(A, θ̂p)− f1(θ̂p) = 0, p = 1, . . . , m − 1,
uapp(B, θ̂p)− f2(θ̂p) = 0, p = 1, . . . , m − 1,
uapp(η̂q, 0)− g1(η̂q) = 0, q = 1, . . . , n − 1,
∂
∂t
uapp(η̂q, 0)− g2(η̂q) = 0, q = 1, . . . , n − 1,
uapp(A, θ̂0)− f1(θ̂0) = 0,
uapp(A, θ̂n)− f1(θ̂n) = 0,
uapp(B, θ̂0)− f2(θ̂0) = 0,
uapp(B, θ̂n)− f2(θ̂n) = 0.

(18)

After solving the systems of nonlinear algebraic equations (18), the values of unknown coefficients {ci ,j} in the Eq. (7) are
obtained and therefore, the solution of the nonlinear time-dependent Phi-four equation is completed. It is noted that, the

Jacobian matrix of the system of nonlinear algebraic equations (18) is not sparse. Nevertheless, the absence of sparsity is not a

factor the effectiveness of the proposed method. Due to our discovery that, the proposed method offers precise outcomes for

small number of discretization points. As a result, the Jacobian matrix of the system of nonlinear algebraic equations (18) is not

large in size and consequently sparsity in not very large dimensions is not important.

3. Numerical illustrations

In this section, two examples are provided to show the relevance and accuracy of the proposed method. Furthermore, the

calculations are executed on a Core i5 PC Laptop operating at 2.53 GHz, equipped with 4GB of memory, utilizing Maple 2015

with the Digits environment set to 16. The system of nonlinear algebraic equations (18) is solved using the Maple function

fsolve. Moreover, the absolute error function is used to depict the difference between the exact solution uex(x, t) and the

approximated solution uapp(x, t) as following

E(x, t) =| uex(x, t)− uapp(x, t) |,

and consequently, ||E||∞ and ||E||2 error norms, are given by

||E||∞ = max{E(x, t) : (x, t) ∈ Ω× [0, T ]},

||E||2 =
(∫ ∫

Ω

(
uex(x, t)− uapp(x, t)

)2
dxdt

) 1
2
.
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It is noted that, in this paper, the ||E||2 error norm is approximated by

||E||2 ≃
( n∑
i=0

B − A
2
wi

m∑
j=0

T

2
ωj(uex(η̂i , θ̂j)− uapp(η̂i , θ̂j))2

) 1
2
,

where, wi =
2

n(n+1)
1

(Pn(ηi ))
2 and ωj =

2
m(m+1)

1
(Pm(θj ))

2 are LGL quadrature weights [10]. These norms are utilized to assess the

precision of the method being suggested.

3.1. Example 1

Consider the nonlinear Phi-four equation (1) beside the boundary and initial conditions (2) and (3), where

λ1 = λ2 = 1, λ3 = −1,
α = 2,

s(x, t) = 0,

A = 0, B = 1, T = 1,

f1(t) =
3λ2
2λ3

(
1− tanh2

[√ λ2
4(4− λ1)

(A− 2t)
])
,

f2(t) =
3λ2
2λ3

(
1− tanh2

[√ λ2
4(4− λ1)

(B − 2t)
])
,

g1(x) =
3λ2
2λ3

(
1− tanh2

[√ λ2
4(4− λ1)

(x)
])
,

g2(x) =
6λ2
λ3

(√ λ2
4(4− λ1)

tanh
[√ λ2
4(4− λ1)

(x)
]
sech2

[√ λ2
4(4− λ1)

(x)
])
.

This problem has been taken from [2] and has the exact solution

u(x, t) =
3λ2
2λ3

(
1− tanh2

[√ λ2
4(4− λ1)

(x − 2t)
])
.

Now, we address the problem utilizing the suggested approach. The approximated and exact solutions for n = m = 14

discretization points at both x and t axes, alongside the absolute error function, are shown in Fig. 1. In addition, the absolute

error functions for (n = 14, m = 7) and (n = 7, m = 14) discretization points, are shown in Fig. 2. Also, ||E||∞ and ||E||2 error
norms obtained from the implementation of the proposed method for different values of n and m, are reported in Table 1,

in comparison with those obtained in [2]. Moreover, in order to understand the rate of convergence, the log-linear graph of

each obtained norms against the number of discretization points is plotted in Fig. 3. It is evident that, with a slight increase in

discretization points, the error will decrease rapidly. These results confirm that, the accuracy as well as the rate of convergence

of the proposed method is very suitable.

Figure 1. Solution of Example 1 for n = m = 14 discretization points.
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Figure 2. Absolute error functions in Example 1 for different values of n and m.

Figure 3. ||E||∞ and ||E||2 versus the number of discretization points, in Example 1 (The log-linear graph).

Table 1. Error norms ||E||∞ and ||E||2 for different values of n and m, in Example 1.

Presented method The best result in [2]

n m ||E||∞ ||E||2 ||E||∞ ||E||2
2 2 8.45e-03 4.49e-03 Not reported Not Reported

4 4 4.18e-04 1.69e-04 6.67e-05 Not Reported

6 6 1.21e-05 5.43e-06 Not reported Not Reported

8 8 2.40e-07 1.03e-07 2.96e-10 Not Reported

10 10 3.25e-09 1.54e-09 Not reported Not Reported

12 12 4.26e-11 2.02e-11 2.84e-10 Not Reported

14 14 5.00e-13 2.40e-13 Not reported Not Reported

3.2. Example 2

In the second example, we examine the nonlinear Phi-four equation (1) along with the boundary and initial conditions (2) and

(3), where

λ1 = 1, λ2 = −1, λ3 = −1,
α = 3,

s(x, t) = (−2 + x2) cosh(x + t) + x6 cosh3(x + t)− 4x sinh(x + t),
A = −1, B = 1, T = 1,
f1(t) = A

2 cosh(A+ t),

f2(t) = B
2 cosh(B + t),

g1(x) = x
2 cosh(x),

g2(x) = x
2 sinh(x).
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This problem has been taken from [9, 6, 26] and has the exact solution, u(x, t) = x2 cosh(x + t). Now, we address the problem

utilizing the suggested approach. The approximated and exact solutions for n = m = 13 discretization points at both x and t

axes, alongside the absolute error function, are shown in Fig. 4. ||E||∞ and ||E||2 error norms obtained from the implementation
of the proposed method for different values of n and m, are reported in Table 2. Also, in Table 3, the error norms at t = 1

obtained from the proposed method in comparison with three other methods are given. Moreover, in order to understand the

rate of convergence, the log-linear graph of each obtained norms against the number of discretization points is plotted in Fig.

5. It is seen that, the proposed method’s accuracy is suitable and convergence is obtained with few discretization points.

Figure 4. Solution of Example 2 for n = m = 13 discretization points.

Table 2. Error norms ||E||∞ and ||E||2 for different values of n and m, in Example 2.

n m ||E||∞ ||E||2
3 3 2.06e-01 2.12e-02

5 5 3.17e-03 1.62e-04

7 7 2.57e-05 6.15e-07

9 9 1.13e-07 1.45e-09

11 11 2.27e-10 2.65e-12

13 13 6.02e-13 1.83e-14

Table 3. Comparison between error norms ||E||∞ and ||E||2 obtained from the proposed method at t = 1 and other methods, in
Example 2.

t = 1 Result in [6] Result in [26] Result in [9] The proposed method

||E||∞ 5.07e-05 3.57e-06 1.03e-09 6.02e-13

||E||2 2.95e-04 2.60e-05 3.71e-09 2.24e-14

Figure 5. ||E||∞ and ||E||2 versus the number of discretization points, in Example 2 (The log-linear graph).
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4. Conclusion

In this study, an accurate and efficient pseudospectral method was applied for the numerical solution of nonlinear Phi-four

equations that appear in particle physics and quantum mechanics. The main advantage of the proposed method is, its ability to

achieve highly precise results with a small number of discretization points, and it demonstrates a high experimentally reported

convergence rate. We believe that, the suggested approach can be expanded to solve various partial differential equations.
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