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Regularization properties of range restricted
LSQR method for solving large-scale linear
discrete ill-posed problems

Hui Zhanga and Hua Daib

The LSQR iterative method is one of the most popular methods for solving large-scale linear discrete ill-posed problem

Ax = b with an error-contaminated right-hand side. In this paper, we consider the regularization properties of range

restricted LSQR (RRLSQR) method. The iteration number k always acts as the regularization parameter because of the

semi-convergence. In order to verify whether or not the RRLSQR method finds a 2-norm filtering best regularization

solution for severely, moderately and mildly ill-posed problems, we present the sinΘ theorems for the 2-norm distances

between the k dimensional left and right Krylov subspaces generated by Lanczos bidiagonalization and the k dimensional

dominant left and right singular subspaces of A, and estimate the distances for the three kinds problems assuming that

the singular values are simple, and develop a regularized RRLSQR method for solving linear discrete ill-posed problems.

Numerical experiments confirm our theoretical results and show the efficiency of the proposed method. Copyright c⃝ 2024
Shahid Beheshti University.

Keywords: Linear discrete ill-posed problem; semi-convergence; range restricted LSQR method; regularization

property.

1. Introduction

We are concerned with the large-scale linear discrete ill-posed problem

min
x∈Rn
∥Ax − b∥ or Ax = b, A ∈ Rm×n, b ∈ Rm, (1)

where ∥ · ∥ denotes the Euclidean vector norm or the spectral matrix norm, the matrix A is of ill-determined rank with its singular
values decaying to zero with increasing index without a significant gap, the right-hand side b = btrue + e represents the available

error-contaminated data, btrue denotes the unavailable error-free vector associated with b and is assumed to be in the range

of A, the available error-contaminated right-hand side b might not be, and e is the unknown noise, caused by measurement,

modeling or discretization errors with ∥e∥ < ∥btrue∥. We assume that a bound δ > 0 of the norm of the noise e is known, i.e.,
∥e∥ ≤ δ. For convenience, we also assume that the matrix A is square, i.e., m = n. In fact, this restriction can be removed since
the least squares solution of (1) is equivalent to the solution of its normal equation ATAx = ATb whose coefficient matrix is

square. Problem (1) arises from the discretization of inverse problems [29, 38], linear ill-posed problems [20, 25, 29] and the

first kind of Fredholm integral equation [38, 39]. Many other applications, including pattern classification [11], inverse black

body radiation [14], image restoration [41], computerized tomography [4, 43], dimensionality reduction [55] and so on, require

also the solutions of problem (1). Due to the presence of the noise e in b and the severe ill-conditioning of the matrix A, the

naive solution xnaive = A
†b to problem (1) does not furnish a useful approximation of the true solution xtrue = A

†btrue , where

A† denotes the Moore-Penrose generalized inverse of the matrix A. Therefore, regularization methods must be used to extract

as good an approximation to xtrue as possible. One of the most popular regularization methods is Tikhonov regularization [53],

which replaces problem (1) by the following minimization problem

min
x∈Rn
∥Ax − b∥2 + λ2∥x∥2 (2)
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where λ > 0 is referred to as the regularization parameter.

Let

A = UΣV T , (3)

be the singular value decomposition (SVD) of the matrix A, where U = [u1, u2, . . . , un] ∈ Rn×n and V = [v1, v2, . . . , vn] ∈ Rn×n are
orthogonal matrices, whose columns are the left and right singular vectors of A, respectively, Σ = diag(σ1, σ2, . . . , σn) ∈ Rn×n
with the singular values σ1 > σ2 > . . . > σn > 0 assumed to be simple, and the superscript T denotes the transpose of a vector or

matrix. The behavior of problem (1) depends on the decay rate of the singular values σi of A. Problem (1) is severely ill-posed [29]

if σj = O(ρ−j)(j = 1, 2, . . . , n) with ρ > 1; problem (1) is mildly or moderately ill-posed [33, 34] if σj = O(j−α)(i = 1, 2, . . . , n)
with 12 < α ≤ 1 or α > 1.
The naive and true solutions of problem (1) may be expressed respectively as

xnaive =

n∑
i=1

uTi b

σi
vi =

n∑
i=1

uTi btrue
σi

vi +

n∑
i=1

uTi e

σi
vi ,

and

xtrue =

n∑
i=1

uTi btrue
σi

vi ,

where ∥xtrue∥ = ∥A†btrue∥ ≤ C with some constant C, which means that btrue satisfies the discrete Picard condition [17, 25], i.e.,
|uTi btrue | decays faster than σi . The common model is |uTi btrue | = σ1+βi (i = 1, 2, . . . , n) with β > 0 [25, 26]. The regularization

solution xλ of the minimization problem (2) is

xλ =

n∑
i=1

fi
uTi b

σi
vi ,

where fi =
σ2
i

σ2
i
+λ2
is a filter, and the optimal regularization parameter λopt should be determined such that ∥xλopt − xtrue∥ =

min
λ>0
∥xλ − xtrue∥. However, it is difficult to find the optimal regularization parameter λopt since btrue is not available. Some

practical methods for choosing regularization parameters have been developed by using the discrepancy principle [42], the

L-curve criterion [23, 40], and the generalized cross validation (GCV) [19].

Another effective and reliable regularization method for solving a small or medium sized ill-posed problem (1) is the

truncated singular value decomposition (TSVD) method [22, 24, 25]. Let Uk = [u1, u2, . . . , uk ], Vk = [v1, v2, . . . , vk ] ∈ Rn×k and
Σk = (σ1, σ2, . . . , σk), then Ak = UkΣkV

T
k is the best rank k approximation to A under the spectral norm and ∥A− Ak∥ = σk+1

[3]. The TSVD method computes the TSVD regularization solution of problem (1) as follows

x tsvdk = A†kb =

k∑
i=1

uTi b

σi
vi ,

where the index k, determined by GCV [19], is a regularization parameter that determines how many dominant singular values

and corresponding left and right singular vectors of A are used to compute a regularization solution.

If the noise e is the Gaussian white noise, then its covariance matrix is η2I, the expected value E(∥e∥2) = nη2, E(|uTi e|) =
η (i = 1, 2, . . . , n), and ∥e∥ ≈

√
nη and |uTi e| ≈ η (i = 1, 2, . . . , n); see, e.g., [25, 26]. The positive integer number k0 that

satisfies

|uTk0b| ≈ |u
T
k0btrue | > |u

T
k0e| ≈ η, |uTk0+1b| ≈ |u

T
k0+1e| ≈ η.

is called the transition point [25, 26]. It follows from [26, p. 71, 86-8, 95] that k0 is an optimal regularization parameter, i.e.,

k0 satisfies ∥x tsvdk0
− xtrue∥ = min

1≤k≤n
∥x tsvdk − xtrue∥, and x tsvdk0

is the best TSVD regularized solution of problem (1). In order to

assess the regularization ability of an Euclidean norm filtering regularization method, we can take x tsvdk0
as the standard reference.

Besides the Tikhonov regularization method [53] and the TSVD method [22, 24, 25], which are either computationally

unfeasible or extremely time-consuming for large-scale problems, iterative regularization has received considerable attention.

Krylov iterative solvers are a major class of methods for solving problem (1). When A is symmetric positive definite, Gilyazov

[18] and Hanke [20] developed the conjugate gradient (CG) method for solving the ill-posed problem (1), respectively. Plato

[49] analyzed the regularizing properties of CG. When A is symmetric and indefinite, based on the Lanczos tridiagonalization,

Paige and Saunders [47] proposed the MINRES method for solving indefinite systems of linear equations. Hanke [20], Kilmer

and Stewart [37], Jensen and Hansen [32], Huang and Jia [30] analyzed regularizing effects of MINRES and showed its semi-

convergence: the iterates first converge to xtrue , then the noise e starts to deteriorate the iteration so that they start to diverge

from xtrue , and converge to xnaive instead. Therefore, the iteration number plays the role of the regularization parameter in

iterative regularization methods. When A is nonsymmetric, Björck [2] presented the CGLS algorithm, which implicitly applies

CG to the normal equations ATAx = ATb. Hanke [20] studied the regularizing properties of CGLS. Based on the Lanczos

bidiagonalization, Paige and Saunders [48] proposed the LSQR algorithm, which is mathematically equivalent to CGLS. The

regularizing effects of the LSQR algorithm are analyzed in [31]. The GMRES method [50] is a popular iterative method for
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solving large linear systems of equations. Calvetti et al. [8] studied regularizing properties of the GMRES method. For iterative

regularization, selecting a good stopping iteration is a crucial task. In order to overcome semi-convergence behavior and to avoid

selecting a regularization parameter a priori, some hybrid methods based on LSQR, GMRES and Tikhonov regularization have

been proposed; see, e.g., [2, 3, 8, 7, 9, 10, 12, 13, 16, 21, 27, 35, 36, 46].

Since the available error-contaminated right-hand side b might not be in the range of A, which causes the linear system Ax = b

to be inconsistent. Substituting Ab for b in Krylov subspace methods ensures that the projected system is consistent. It is natural

to apply iterative methods with iterates in the range of A to the approximate solution of the ill-posed problem (1). Hanke [20]

proposed a variant MR-II of the MINRES method for the solution of linear discrete ill-posed problems with a symmetric matrix

A, which uses the starting vector Ab and restricts the resulting Krylov subspace to the range of A. The regularizing effects of the

range restricted minimal residual Krylov subspace method are analyzed in [15, 20, 30]. Based on the Arnoldi process, Neuman

et al. [44, 45] developed the range restricted GMRES methods for the solution of large nonsymmetric linear discrete ill-posed

problems, which was originally designed for solving singular and inconsistent linear systems [5]. It has been observed in [6, 28]

that the range restricted GMRES methods usually provides better regularized solutions than the GMRES method. Bellalij et al.

[1] analyzed the properties of range restricted GMRES methods.

In this paper, motivated by the work in [44, 45], we develop the range restricted LSQR (RRLSQR) method for solving large-

scale linear ill-posed problems (1). In order to analyze regularizing effects of the RRLSQR method, we assume that btrue and

the transition point k0 satisfy the following conditions

|vTi btrue | = σ1+βi , β > 0, i = 1, 2, . . . , n, (4)

and

|vTk0b| ≈ |v
T
k0btrue | > |v

T
k0e| ≈ η, |vTk0+1b| ≈ |v

T
k0+1e| ≈ η. (5)

Our numerical experiments confirm that the inequality (5) is also true. We investigate the regularizing properties of the RRLSQR

method, and establish some relationship between the underlying k dimensional left and right Krylov subspaces and the dominant

left and right singular subspaces, which shows how the underlying k dimensional left and right Krylov subspaces approximate

the dominant left and right singular subspaces, respectively. We develop a hybrid RRLSQR method that combines the RRLSQR

method with a regularization method applied to the lower dimensional projected problems for solving large-scale linear ill-posed

problems (1).

The paper is organized as follows. In Section 2, we present the RRLSQR method and analyze its regularizing effects. In

Section 3, we establish the sinΘ theorems for the 2-norm distances between the underlying k dimensional left and right Krylov

subspaces and the k dimensional dominant left and right singular subspaces of A, and derive accurate estimates on them for

severely, moderately and mildly ill-posed problems, respectively. In Section 4, we develop a regularized RRLSQR method for

solving large-scale linear ill-posed problems (1). In Section 5, we report some numerical experiments on test matrices to confirm

our theoretical results and show the efficiency of the proposed method. Finally, some concluding remarks are given in Section 6.

Throughout this paper, we denote by Kk(A, b) = span{b, Ab, . . . , Ak−1b} the k dimensional Krylov subspace generated by the
matrix A and the vector b, and by I and the bold letter 0 the identity matrix and the zero matrix, respectively. Let Uk = span(Uk)
and Vk = span(Vk) be the k dimensional dominant left and right singular subspaces of A, respectively. Θ(X ,Y) denotes the
canonical angle between the two subspaces X and Y of the same dimension [52]. For the matrix B = (bi j), define |B| = (|bi j |),
and for |C| = (|ci j |), |B| ≤ |C| means |bi j | ≤ |ci j |.

2. The RRLSQR method and its regularizing effects

The k-step Lanczos bidiagonalization process, which starts with an initial unit vector p1 and computes two orthonormal bases

{q1, q2, . . . , qk} and {p1, p2, . . . , pk+1} of the Krylov subspacesKk(ATA,ATp1) andKk+1(AAT , p1), respectively, may be described
as follows.

Algorithm 1. The k-step Lanczos bidiagonalization process.

Input: A ∈ Rn×n, an initial unit vector p1 ∈ Rn, a positive integer k and set β1q0 = 0.
Output:matrix Bk ∈ R(k+1)×k , orthonormal bases of Kk(ATA,ATp1) and Kk+1(AAT , p1).
for j = 1, 2, . . . , k do

1. r = ATpj − βjqj−1;
2. αj = ∥r∥; qj = r/αj ;
3. z = Aqj − αjpj ;
4. βj+1 = ∥z∥; pj+1 = z/βj+1;
end for
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Let Qk = (q1, q2, . . . , qk), Pk+1 = (p1, p2, . . . , pk+1) and

Bk =



α1
β2 α2

β3
. . .

. . . αk
βk+1


∈ R(k+1)×k .

It is easy to verify that the following relations hold

AQk = Pk+1Bk , (6)

ATPk+1 = QkB
T
k + αk+1qk+1e

T
k+1,

where ek+1 is the (k + 1)-th canonical basis vector of R
k+1. It follows from (6) that

Bk = P
T
k+1AQk .

We assume that the singular values θ
(k)
i (i = 1, 2, . . . , k) of Bk , called the Ritz values of A with respect to the left and right

subspaces span(Pk+1) = Kk+1(AA
T , p1) and span(Qk) = Kk(A

TA,ATp1), are all simple and αi > 0, βi+1 > 0 if the Lanczos

bidiagonalization process does not break down until the k-step iteration.

In Algorithm 1 we take p1 = Ab/∥Ab∥, then Pk = span(Pk) = Kk(AAT , Ab), Qk = span(Qk) = Kk(ATA,ATAb). Let the
initial approximate solution of (1) be x0 = 0. The RRLSQR method determines iterates xk for k ≥ 1 such that

∥Axk − b∥ = min
x∈span(Qk )

∥Ax − b∥. (7)

Substituting the decomposition (6) and x = Qky (y ∈ Rk) into (7) yields

min
x∈span(Qk )

∥Ax − b∥2 = min
y∈Rk
∥AQky − b∥2 = min

y∈Rk
∥Pk+1Bky − b∥2

= min
y∈Rk
∥Bky − P Tk+1b∥2 + bT (I − Pk+1P Tk+1)b.

(8)

Since Bk is of full rank, it follows from (8) that the least squares problem min
y∈Rk
∥Bky − P Tk+1b∥ has the unique solution

yk = B
†
kP
T
k+1b. Then the k-th iterate xk may be expressed as

xk = Qkyk = QkB
†
kP
T
k+1b. (9)

With the increase of index k, the residual norm ∥Axk − b∥ decreases and the solution norm ∥xk∥ = ∥yk∥ increases monotonically,
respectively. It follows from (9) that the RRLSQR method solves a sequence of problems

min ∥x∥ subject to ∥Pk+1BkQTk x − b∥ = min (10)

to obtain the regularized solutions xk of (1) from k = 1 upwards. Similar to the TSVD method, which replaces A with the best

rank k approximation Ak of A, (10) shows that the RRLSQR iterates can be interpreted as the minimum-norm least squares

solutions of the perturbed problems that replace A in (1) by its rank k approximations Pk+1BkQ
T
k .

Let

γk = ∥A− Pk+1BkQTk ∥,
which measures the accuracy of the rank k approximation Pk+1BkQ

T
k to A, then we have γk ≥ σk+1 since the best rank k

approximation Ak satisfies ∥A− Ak∥ = σk+1. If γk is closer to σk+1 than σk :

σk+1 ≤ γk <
σk + σk+1
2

,

then Pk+1BkQ
T
k is called a near best rank k approximation to A [33].

The following result can be derived from Property 2.8 in [54].

Lemma 1 If the RRLSQR method is applied to (1) with the starting vector p1 = Ab/∥Ab∥, then the k-th iterate xk can be
expressed as

xk =

n∑
i=1

f
(k)
i

uTi b

σi
vi , k = 1, 2, . . . , n (11)

where the filters

f
(k)
i = 1−

k∏
j=1

(θ
(k)
j )

2 − σ2i
(θ
(k)
j )

2
, i = 1, 2, . . . , n

and θ
(k)
1 > θ

(k)
2 > . . . > θ

(k)
k are the singular values of Bk .

24 Copyright c⃝ 2024 Shahid Beheshti University. Comput. Math. Comput. Model. Appl. 2024, Vol. 3, Iss. 1, pp. 21–37
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Based on the filtered SVD expansion (11), we obtain the following result concerning the semi-convergence point of the

RRLSQR method and the transition point of the TSVD method.

Theorem 1 Assume that k∗ is the semi-convergence point of the RRLSQR method. If the Ritz values θ
(k)
j of Bk converge to

the first k∗ large singular values σj of A in natural order, then k
∗ = k0; if the Ritz values θ

(k)
j of Bk do not converge to the first

k large singular values σj of A in natural order for some k < k
∗, then k∗ < k0.

Proof. The proof is similar to that of Theorem 3.1 in [33]. Hence, it is omitted. �

3. The distances between Krylov subspaces and singular subspaces

In this section, we consider the fundamental problem: how do the underlying k dimensional left and right Krylov subspaces

Pk = Kk(AAT , Ab) and Qk = Kk(ATA,ATAb) approximate the k dimensional dominant left and right singular subspaces Uk and
Vk of A, respectively?
Let

D = diag(σ21v
T
1 b, σ

2
2v
T
2 b, . . . , σ

2
nv
T
n b) =

(
D1 0

0 D2

)
, (12)

D̂ = diag(σ1v
T
1 b, σ2v

T
2 b, . . . , σnv

T
n b) =

(
D̂1 0

0 D̂2

)
, (13)

Tk =


1 σ21 . . . σ2k−21

1 σ22 . . . σ2k−22

...
...

...
...

1 σ2n . . . σ2k−2n

 =
(
Tk1
Tk2

)
, (14)

where D1, D̂1, Tk1 ∈ Rk×k . It follows from (5) and σi ̸= σj (i , j = 1, 2, . . . , k, i ̸= j) that D1, D̂1 and Tk1 are nonsingular. Let

∆k = D2Tk2T
−1
k1 D

−1
1 , ∆̂k = D̂2Tk2T

−1
k1 D̂

−1
1 ∈ R(n−k)×k . (15)

We present the following sinΘ theorems which measure the 2-norm distances between Qk and Vk , and Pk and Uk .

Theorem 2 For k = 1, 2, . . . , n − 1, we have

∥sinΘ(Qk ,Vk)∥ =
∥∆k∥√
1 + ∥∆k∥2

, (16)

∥sinΘ(Pk ,Uk)∥ =
∥∆̂k∥√
1 + ∥∆̂k∥2

, (17)

where ∆k , ∆̂k ∈ R(n−k)×k are defined by (15).

Proof. Let Vn = [v1, v2, . . . , vn], vi is the i-th right singular vector of A. Using (12) and (14), we obtain Kk(Σ
2,Σ2V Tn b) =

span(DTk). From Kk(A
TA,ATAb) = span(VnDTk) we have

Qk = Kk(ATA,ATAb) = span
(
Vn

(
D1Tk1
D2Tk2

))
= span

(
Vn

(
I

∆k

))
.

Let Vn = (Vk , V
⊥
k ) with V

⊥
k = [vk+1, vk+2, . . . , vn], and define

Zk = Vn

(
I

∆k

)
= Vk + V

⊥
k ∆k , (18)

then ZTk Zk = I + ∆
T
k ∆k . Let Ẑk = Zk(Z

T
k Zk)

− 12 , then the columns of Ẑk form an orthonormal basis of Qk . From (18) we get

Ẑk = (Vk + V
⊥
k ∆k)(I + ∆

T
k ∆k)

− 12 . (19)

It follows from the definition of Θ(Qk ,Vk) and (19) that

∥sinΘ(Qk ,Vk)∥ = ∥(V ⊥k )T Ẑk∥ = ∥∆k(I + ∆Tk ∆k)−
1
2 ∥ = ∥∆k∥√

1 + ∥∆k∥2
.

Comput. Math. Comput. Model. Appl. 2024, Vol. 3, Iss. 1, pp. 21–37 Copyright c⃝ 2024 Shahid Beheshti University. 25



Computational Mathematics and Computer Modeling with Applications H. Zhang and H. Dai

Let Un = [u1, u2, . . . , un], ui is the i-th left singular vector of A. Using (13) and (14), we obtain Kk(Σ
2,ΣV Tn b) = span(D̂Tk).

From Kk(AA
T , Ab) = span(UnD̂Tk) we have

Pk = Kk(AAT , Ab) = span
(
Un

(
D̂1Tk1
D̂2Tk2

))
= span

(
Un

(
I

∆̂k

))
.

The remaining proof of (17) is similar to that of (16). Hence, it is omitted. �
Let

L
(k)
j (λ) =

k∏
i=1,i ̸=j

λ− σ2i
σ2j − σ2i

, i = 1, 2, . . . , k

be the j-th Lagrangian interpolation basis function at nodes σ21, σ
2
2, . . . , σ

2
k , and

|L(k)k1 (0)| = max
j=1,2,...,k

|L(k)j (0)|, |L
(k)
j (0)| =

k∏
i=1,i ̸=j

σ2i
|σ2j − σ2i |

, i = 1, 2, . . . k. (20)

|L(k)j (0)|(j = 1, 2, . . . , k) plays a key role in studying the regularizing effects of the LSQR and RRLSQR methods. Jia [33]
provided the accurate estimates of |L(k)j (0)| for severely, moderately and mildly ill-posed problems.

Lemma 2 [33] For the severely ill-posed problem with the singular values σj = O(ρ−j) (j = 1, 2, . . . n) where ρ > 1 is an
appropriate constant, and k = 2, 3, . . . , n − 1, we have

|L(k)k (0)| = 1 +O(ρ
−2),

|L(k)j (0)| =
1 +O(ρ−2)∏k
i=j+1(

σj
σi
)2
=

1 +O(ρ−2)
O(ρ(k−j)(k−j+1)) , j = 1, 2, . . . , k − 1,

|L(k)k1 (0)| = max
j=1,2,...,k

|L(k)j (0)| = 1 +O(ρ
−2).

For a moderately ill-posed problem with singular values σj = ζj
−α (j = 1, 2, . . . , n) where α > 1 and ζ > 0 are some constants,

and k = 2, 3, . . . , n − 1, we have

|L(k)j (0)| ≈ (1 +
j

2α+ 1
)

k∏
i=j+1

(
j

i
)2α, j = 1, 2, . . . , k − 1,

k

2α+ 1
< |L(k)k1 (0)| ≈ 1 +

k

2α+ 1

with the lower bound requiring that k satisfies 2α+1
k
≤ 1. For a mildly ill-posed problem with singular values σj = ζj−α (j =

1, 2, . . . , n) where 1
2
< α ≤ 1 and ζ > 0 are some constants, if k satisfies 2α+1

k
≤ 1, we have

k

2α+ 1
< |L(k)k1 (0)|.

Now, we establish accurate estimates about ∥∆k∥ and ∥∆̂k∥ for severely ill-posed problems.

Theorem 3 Let the SVD of A be as (3). Assume that (1) is severely ill-posed problem with σj = O(ρ−j) (j = 1, 2, . . . , n) where
ρ > 1 is some constant. Then

∥∆1∥ ≤
σ22
σ21

max2≤i≤n|vTi b|
|vT1 b|

(1 +O(ρ−4)), (21)

∥∆k∥ ≤
σ2k+1
σ2k

maxk+1≤i≤n|vTi b|
min1≤i≤k |vTi b|

(1 +O(ρ−4))|L(k)k1 (0)|, k = 2, 3, . . . , n − 1, (22)

∥∆̂1∥ ≤
σ2
σ1

max2≤i≤n|vTi b|
|vT1 b|

(1 +O(ρ−2)), (23)

∥∆̂k∥ ≤
σk+1
σk

maxk+1≤i≤n|vTi b|
min1≤i≤k |vTi b|

(1 +O(ρ−2))|L(k)k1 (0)|, k = 2, 3, . . . , n − 1. (24)
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Proof. By using the structure of the matrix Tk and the property of the Vandermonde matrix Tk1, Tk2T
−1
k1 may be expressed as

[33]

Tk2T
−1
k1 =


L
(k)
1 (σ

2
k+1) L

(k)
2 (σ

2
k+1) . . . L

(k)
k (σ

2
k+1)

L
(k)
1 (σ

2
k+2) L

(k)
2 (σ

2
k+2) . . . L

(k)
k (σ

2
k+2)

...
...

...

L
(k)
1 (σ

2
n) L

(k)
2 (σ

2
n) . . . L

(k)
k (σ

2
n)

 ∈ R(n−k)×k . (25)

|L(k)j (λ)| is bounded by |L
(k)
j (0)| since |L

(k)
j (λ)| is monotonically decreasing for 0 ≤ λ ≤ σ

2
k . It follows from this property and the

definition (20) of L
(k)
k1
(0) that |L(k)i (σ

2
j )| ≤ |L

(k)
k1
(0)|(i = 1, 2, . . . , k; j = k + 1, k + 2, . . . , n). From (25) we have

|∆k | = |D2Tk2T−1k1 D
−1
1 |

≤



σ2
k+1

σ21
| v
T
k+1
b

vT1 b
|L(k)k1 (0)|

σ2
k+1

σ22
| v
T
k+1
b

vT2 b
|L(k)k1 (0)| . . .

σ2
k+1

σ2
k

| v
T
k+1
b

vT
k
b
|L(k)k1 (0)|

σ2
k+2

σ21
| v
T
k+2
b

vT1 b
|L(k)k1 (0)|

σ2
k+2

σ22
| v
T
k+2
b

vT2 b
|L(k)k1 (0)| . . .

σ2
k+2

σ2
k

| v
T
k+2
b

vT
k
b
|L(k)k1 (0)|

...
...

...
σ2n
σ21
| v
T
n b

vT1 b
|L(k)k1 (0)|

σ2n
σ22
| v
T
n b

vT2 b
|L(k)k1 (0)| . . .

σ2n
σ2
k

| v
T
n b

vT
k
b
|L(k)k1 (0)|


= |L(k)k1 (0)|∆̃k ,

(26)

where ∆̃k = (σ
2
k+1|vTk+1b|, σ2k+2|vTk+2b|, . . . , σ2n |vTn b|)T ( 1

σ21 |v
T
1 b|
, 1

σ22 |v
T
2 b|
, . . . , 1

σ2
k
|vT
k
b| ) is a rank one matrix. Using ∥C∥ ≤ ∥|C|∥ for any

matrix C [51] and (26), we have

∥∆k∥ ≤ ∥|∆k |∥ ≤ |L(k)k1 (0)|∥∆̃k∥ = |L
(k)
k1
(0)|

(
n∑

j=k+1

σ4j |vTj b|2
)1/2( k∑

j=1

1

σ4j |vTj b|2

)1/2
. (27)

In the following we estimate the upper bounds of two square root factors in (27) separately.

From σj = O(ρ−j) (j = 1, 2, . . . , n), and for k = 1, 2, . . . , n − 1, we get

(

n∑
j=k+1

σ4j |vTj b|2)1/2 = σ2k+1 max
k+1≤i≤n

|vTi b|
(

n∑
j=k+1

σ4j |vTj b|2

σ4k+1maxk+1≤i≤n |vTi b|2

)1/2

≤ σ2k+1 max
k+1≤i≤n

|vTi b|
(

n∑
j=k+1

σ4j
σ4k+1

)1/2

= σ2k+1 max
k+1≤i≤n

|vTi b|
(
1 +

n∑
j=k+2

O(ρ4(k−j)+4)
)1/2

= σ2k+1 max
k+1≤i≤n

|vTi b|
(
1 +O(

n∑
j=k+2

ρ4(k−j)+4)

)1/2

= σ2k+1 max
k+1≤i≤n

|vTi b|
(
1 +O[ ρ

−4

1− ρ−4 (1− ρ
−4(n−k−1))]

)1/2
= σ2k+1 max

k+1≤i≤n
|vTi b|(1 +O(ρ−4))1/2

= σ2k+1 max
k+1≤i≤n

|vTi b|(1 +O(ρ−4))

(28)
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with 1 +O(ρ−4) = 1 for k = n − 1. For k = 2, 3, . . . , n − 1, we obtain

(

k∑
j=1

1

σ4j |vTj b|2
)1/2 =

1

σ2k min1≤i≤k |vTi b|

(
k∑
j=1

σ4k min1≤i≤k |vTi b|2

σ4j |vTj b|2

)1/2

≤ 1

σ2k min1≤i≤k |vTi b|

(
k∑
j=1

σ4k
σ4j

)1/2

=
1

σ2k min1≤i≤k |vTi b|

(
1 +O(

k−1∑
j=1

ρ4(j−k))

)1/2

=
1

σ2k min1≤i≤k |vTi b|
(1 +O(ρ−4))1/2

=
1

σ2k min1≤i≤k |vTi b|
(1 +O(ρ−4)).

(29)

From (27)-(29), we obtain (22).

For the special case of k = 1, from (12) and (14) we have

D1 = σ
2
1v
T
1 b, D2 = diag(σ

2
2v
T
2 b, σ

2
3v
T
3 b, . . . , σ

2
nv
T
n b),

Tk1 = 1, Tk2 = (1, 1, . . . , 1)
T ∈ Rn−1.

Using (15), we obtain

∆1 =
1

σ21v
T
1 b
(σ22v

T
2 b, σ

2
3v
T
3 b, . . . , σ

2
nv
T
n b)

T . (30)

From (28) and (30) we get (21).

Using (13), (15) and (25), similar to (27), we can obtain

∥∆̂k∥ ≤ |L(k)k1 (0)|
(

n∑
j=k+1

σ2j |vTj b|2
)1/2( k∑

j=1

1

σ2j |vTj b|2

)1/2
. (31)

Similar to the derivation of the inequalities (28) - (30), we can prove both (23) and (24) by using (31). �
It follows from Lemma 2 and Theorem 3 that the bounds (21) - (24) can be unified as

∥∆k∥ ≤
σ2k+1
σ2k

maxk+1≤i≤n|vTi b|
min1≤i≤k |vTi b|

(1 +O(ρ−2)), k = 1, 2, . . . , n − 1, (32)

∥∆̂k∥ ≤
σk+1
σk

maxk+1≤i≤n|vTi b|
min1≤i≤k |vTi b|

(1 +O(ρ−2)), k = 1, 2, . . . , n − 1. (33)

Remark 1 Based on (4),(5) and E(|vTi e|) = η (i = 1, 2, . . . , n), we have

maxk+1≤i≤n|vTi b|
min1≤i≤k |vTi b|

≈ maxk+1≤i≤n|v
T
i btrue |

min1≤i≤k |vTi btrue |
≈ |v

T
k+1btrue |
|vTk btrue |

≈
σ1+βk+1

σ1+βk
< 1, k = 1, 2, . . . , k0 − 1, (34)

maxk0+1≤i≤n|vTi b|
min1≤i≤k0 |vTi b|

≈ maxk0+1≤i≤n|v
T
i e|

min1≤i≤k0 |vTi btrue |
≈ η

σ1+βk0

< 1, (35)

maxk+1≤i≤n|vTi b|
min1≤i≤k |vTi b|

≈ maxk0+1≤i≤n|v
T
i e|

min1≤i≤k0 |vTi e|
≈ η
η
≈ 1, k = k0 + 1, . . . , n − 1. (36)

Remark 2 For severely ill-posed problems, from (32) - (36), we have

∥∆k∥ ≤
σ2k+1
σ2k
·
σ1+βk+1

σ1+βk
(1 +O(ρ−2)) ∼ ρ−(3+β), k = 1, 2, . . . , k0, (37)

∥∆k∥ ≤
σ2k+1
σ2k
(1 +O(ρ−2)) ∼ ρ−2, k = k0 + 1, . . . , n − 1, (38)

∥∆̂k∥ ≤
σk+1
σk
·
σ1+βk+1

σ1+βk
(1 +O(ρ−2)) ∼ ρ−(2+β), k = 1, 2, . . . , k0, (39)
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∥∆̂k∥ ≤
σk+1
σk
(1 +O(ρ−2)) ∼ ρ−1, k = k0 + 1, . . . , n − 1. (40)

From Theorem 2 and (37) - (40) we observe that both sinΘ(Qk ,Vk) and sinΘ(Pk ,Uk) in the RRLSQR method exhibit neither
increasing nor decreasing tendency for k = 1, 2, . . . , k0 and k = k0 + 1, . . . , n − 1, respectively. For the LSQR method, Jia [33]
showed that

∥∆k∥ ≤
σk+1
σk
·
σ1+βk+1

σ1+βk
(1 +O(ρ−2)) ∼ ρ−(2+β), k = 1, 2, . . . , k0, (41)

∥∆k∥ ≤
σk+1
σk
(1 +O(ρ−2)) ∼ ρ−1, k = k0 + 1, . . . , n − 1. (42)

(37), (38) and (41), (42) show that the upper bound of ∥∆k∥ in the RRLSQR method is smaller than that of ∥∆k∥ in the LSQR
method. It follows from Theorem 2, (37), (38), (41) and (42) that the upper bound of sinΘ(Qk ,Vk) in the RRLSQR method
is smaller than that of sinΘ(VRk ,Vk) in the LSQR method, where VRk = Kk(ATA,ATb), which means that the Krylov subspace
Qk captures more information about Vk than VRk .

Next we estimate ∥∆k∥ and ∥∆̂k∥ for moderately and mildly ill-posed problems.

Theorem 4 For a moderately or mildly ill-posed problem with singular values σj = ζj
−α (j = 1, 2, . . . , n) where ζ > 0 and α > 1

or 1
2
< α ≤ 1, we obtain

∥∆1∥ ≤
max2≤i≤n|vTi b|
|vT1 b|

1√
4α− 1

, (43)

∥∆k∥ ≤
maxk+1≤i≤n|vTi b|
min1≤i≤k |vTi b|

√
k2

16α2 − 1 +
k

4α− 1 |L
(k)
k1
(0)|, k = 2, 3, . . . , n − 1, (44)

∥∆̂1∥ ≤
max2≤i≤n|vTi b|
|vT1 b|

1√
2α− 1

, (45)

∥∆̂k∥ ≤
maxk+1≤i≤n|vTi b|
min1≤i≤k |vTi b|

√
k2

4α2 − 1 +
k

2α− 1 |L
(k)
k1
(0)|, k = 2, 3, . . . , n − 1. (46)

Proof. We only need to estimate the right side of (27). For k = 1, 2, . . . , n − 1, we have

(

n∑
j=k+1

σ4j |vTj b|2)1/2 = σ2k+1 max
k+1≤i≤n

|vTi b|
(

n∑
j=k+1

σ4j |vTj b|2

σ4k+1maxk+1≤i≤n |vTi b|2

)1/2

≤ σ2k+1 max
k+1≤i≤n

|vTi b|
(

n∑
j=k+1

(
j

k + 1
)(−4α)

)1/2

= σ2k+1 max
k+1≤i≤n

|vTi b|
(
(k + 1)4α

n∑
j=k+1

1

j4α

)1/2

≤ σ2k+1 max
k+1≤i≤n

|vTi b|(k + 1)2α
(∫ ∞
k

1

x4α
dx

)1/2
= σ2k+1 max

k+1≤i≤n
|vTi b|(

σk
σk+1

)2
√

k

4α− 1

= σ2k max
k+1≤i≤n

|vTi b|
√

k

4α− 1 .

(47)
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For α > 1 or 1
2
< α ≤ 1 the function x4α is convex over the interval [0, 1], we get

(

k∑
j=1

1

σ4j |vTj b|2
)1/2 =

1

σ2k min1≤i≤k |vTi b|

(
k∑
j=1

σ4k min1≤i≤k |vTi b|2

σ4j |vTj b|2

)1/2

≤ 1

σ2k min1≤i≤k |vTi b|

(
k∑
j=1

(
j

k
)4α

)1/2

=
1

σ2k min1≤i≤k |vTi b|

(
k

k∑
j=1

1

k
(
j − 1
k
)4α + 1

)1/2

≤ 1

σ2k min1≤i≤k |vTi b|

(
k

∫ 1
0

x4αdx + 1

)1/2
≤ 1

σ2k min1≤i≤k |vTi b|

√
k

1 + 4α
+ 1, k = 2, 3, . . . , n − 1.

(48)

Substituting (47) and (48) into (27) yields (44). For k = 1, (43) follows from (30) and (47).

Using (31), we can prove both (45) and (46), similar to Theorem 4.4 in [33]. Hence, it is omitted. �

Remark 3 For moderately and mildly ill-posed problems and the RRLSQR method, based on (34) - (36) and (43)- (46), we

have

∥∆1∥ ≤
σ1+β2
σ1+β1

1√
4α− 1

∼ 2−α(1+β) 1√
4α− 1

, (49)

∥∆k∥ ≤
σ1+βk+1

σ1+βk

√
k2

16α2 − 1 +
k

4α− 1 |L
(k)
k1
(0)|

∼ ( k
k + 1

)α(1+β)
√

k2

16α2 − 1 +
k

4α− 1 |L
(k)
k1
(0)|, k = 2, 3, . . . , n − 1

(50)

and

∥∆̂1∥ ≤
σ1+β2
σ1+β1

1√
2α− 1

∼ 2−α(1+β) 1√
2α− 1

,

∥∆̂k∥ ≤
σ1+βk+1

σ1+βk

√
k2

4α2 − 1 +
k

2α− 1 |L
(k)
k1
(0)|

∼ ( k
k + 1

)α(1+β)
√

k2

4α2 − 1 +
k

2α− 1 |L
(k)
k1
(0)|, k = 2, 3, . . . , n − 1.

(51)

For the LSQR method, Jia [33] presented

∥∆1∥ ≤
σ1+β2
σ1+β1

1√
2α− 1

∼ 2−α(1+β) 1√
2α− 1

, (52)

and

∥∆k∥ ≤
σ1+βk+1

σ1+βk

√
k2

4α2 − 1 +
k

2α− 1 |L
(k)
k1
(0)|

∼ ( k
k + 1

)α(1+β)
√

k2

4α2 − 1 +
k

2α− 1 |L
(k)
k1
(0)|, k = 2, 3, . . . , n − 1.

(53)

Comparing (49) and (50) with (52) and (53), we know that the upper bound of ∥∆k∥ in RRLSQR method is smaller than that
of ∥∆k∥ in the LSQR method for moderately and mildly ill-posed problems, then the upper bound of sinΘ(Qk ,Vk) is smaller
than that of sinΘ(VRk ,Vk).
Lemma 2 shows that both

√
k2

16α2−1 +
k

4α−1 |L
(k)
k1
(0)| and

√
k2

4α2−1 +
k

2α−1 |L
(k)
k1
(0)| increase as k grows. For moderately ill-posed

problems, from Theorem 2, (50) and (51) we observe that both sinΘ(Qk ,Vk) and sinΘ(Pk ,Uk) in the RRLSQR method exhibit
increasing tendency with k, which means that Qk and Pk can not capture Vk and Uk , respectively. In fact, both sinΘ(Qk ,Vk)
and sinΘ(Pk ,Uk) approach one as k increases, which means that Qk and Pk will contain substantial information on the right
and left singular vectors corresponding to the n − k small singular values of A, respectively. For mildly ill-posed problems, Lemma
2 indicates that |L(k)k1 (0)| is substantially greater than one for

1
2
< α ≤ 1. Consequently, the upper bounds (50) and (51) become

increasingly large as k increases, causing that both ∥∆k∥ and ∥∆̂k∥ are large and both sinΘ(Qk ,Vk) and sinΘ(Pk ,Uk) approach
one.
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For the LSQR method, Jia [33] investigated how ∥sinΘ(VRk ,Vk)∥ affects the smallest Ritz value θ
(k)
k , and showed that

θ
(k)
k > σk+1 holds for suitable ∥sinΘ(V

R
k ,Vk)∥ < 1 and the k Ritz values θ

(k)
i do not approximate the large singular values σi of

A in natural order when ∥sinΘ(VRk ,Vk)∥ is sufficiently close to one. The same results can be obtained for the RRLSQR method,
and will be confirmed numerically later.

4. A regularized RRLSQR method

In this section, some computational issues related to the application of the RRLSQR method to the solution of large-scale

discrete ill-posed problems are considered, and a regularized RRLSQR method is developed for solving the ill-posed problem (1).

To solve the large-scale linear discrete ill-posed problem (1) by the RRLSQR method, we may compute the solution yk of

a sequence of the least squares problems (8) for increasing iteration number k, and obtain an approximate solution xk by (9).

This is a regularization method since the ill-conditioned problem (1) is replaced by the less ill-conditioned least squares problem

(8). The iteration number k plays the role of the regularization parameter determined by the following Stopping Rule based on

the discrepancy principle [25].

Stopping Rule 1. Let α > 0 be fixed and let b is the right hand of (1) contaminated by errors. Denote the solutions computed

by the RRLSQR method applied to the solution of the linear system (1) by xk(k = 1, 2, . . .). Terminate the RRLSQR iterations

as soon as a determined iterate xk satisfies

∥b − Axk∥ ≤ αδ.

The termination index is denoted by k∗.

However, the condition numbers of the least squares problems (10) are increasing with the increasing iteration number k.

Therefore, it is necessary to apply regularization method to solve the least squares problem (10). The TSVD method [25, 22, 24]

is a good choice to compute the regularized solution to the least squares problem (10) since the size of the projected problem

(10) is not large.

Let

Bk = U
(k)Σ(k)(V (k))T ,

be a SVD of the matrix Bk , where U
(k) = [u

(k)
1 , u

(k)
2 , . . . , u

(k)
k ] ∈ R

(k+1)×k and V (k) = [v
(k)
1 , v

(k)
2 , . . . , v

(k)
k ] ∈ R

k×k are orthonormal,

Σk = diag(σ
(k)
1 , σ

(k)
2 , . . . , σ

(k)
k ) with the singular values σ

(k)
1 ≥ σ

(k)
2 ≥ . . . ≥ σ

(k)
k ≥ 0. Then the TSVD regularization solution of

the least squares problem (10) computed by the TSVD method can be described as

yk =

k̃∑
i=1

(u
(k)
i )

TP Tk+1b

σ
(k)
i

v
(k)
i , (54)

where the index k̃ is the regularization parameter, which determined by the generalized cross-validation (GCV) [25, 19]. It

determines how many large SVD components of Bk are used to compute a regularization solution yk to the least squares

problem (10). Based on them, an approximate solution to the large-scale linear discrete ill-posed problem (1) can be expressed

as

xk = Qkyk .

If xk satisfies the Stopping Rule 1, then xk can be considered as the regularized solution to the ill-posed problem (1). The

regularized RRLSQR method for solving the large-scale discrete ill-posed problem (1) can be described as follows.

Algorithm 2. Regularized RRLSQR algorithm.

Input: A ∈ Rn×n, b ∈ Rn.
Output: Regularized solution xk∗ of the linear discrete ill-posed problem (1).

1. Compute p1 = Ab/∥Ab∥, and set k = 1.
2. Construct the orthonormal basis {pi}k+1i=1 of Kk(AA

T , Ab) and {qi}ki=1 of Kk(A
TA,ATAb) by using Algorithm 1.

3. Use the TSVD method to compute the regularized solution (54) of the projected problem (10), and compute the

approximate solution xk = Qkxk of (1).

4. If xk satisfies the Stopping Rule 1, then xk is the regularized solution of (1), and exit; else set k := k + 1 and go to 2.

5. Experimental results

In this section, we will conduct some experiments to confirm our theoretical results and demonstrate the effectiveness of the

regularized RRLSQR method for solving large-scale linear discrete ill-posed problems. All the computations were carried out in
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MATLAB R2016b on personal computer (3.4 GHz Intel Core i5, 8 GB 1600 MHZ DDR3) with double precision. We choose

three ill-posed problems: the severely ill-posed problem shaw [24], the moderately ill-posed problem der iv2[24] and the mildly

ill-posed problem regutm[24]. In all test problems, we have not used any preconditioning since preconditioning would change

the condition numbers of these problems.

For all the experiments, the exact solution xtrue = rand(n, 1), where function rand creates an n × 1 random matrix with entries
uniformly distributed in [0, 1], and the error-free right-hand side is btrue = Axtrue . The error is e = δ × ê/∥ê∥, ê = rand(n, 1)
but different from xtrue , δ = 10

−2, 10−3. Then the error-contamination right-hand side b = btrue + e.

For each test problem with δ = 10−2 and δ = 10−3 we give a comparison between sinΘ1 = ∥sinΘ(VRk ,Vk)∥ and sinΘ2 =
∥sinΘ(Qk ,Vk)∥, where Θ(VRk ,Vk) and Θ(Qk ,Vk) are the actually canonical angles between subspaces VRk = Kk(ATA,ATb) and
Vk spanned by the k dominant right singular vectors of A, and between subspaces Qk = Kk(ATA,ATAb) and Vk , respectively,
and a comparison between the k Ritz values θ

(k)
i generated by the RRLSQR method and the first k + 1 large singular values

of A. We depict sinΘ1 versus sinΘ2 in Figs. 1-6(a) and draw the comparison diagrams of k Ritz values θ
(k)
i and first k + 1

large singular values σi of A which are converted into logarithmic values in Figs. 1-6(b). We also compare the accuracy of the

solution x r r lsqrk obtained by the regularized RRLSQR method with that of the solution x lsqrk computed by the regularized LSQR

method by the relative errors defined as
∥x r r lsqr
k

−xtrue∥
∥xtrue∥ and

∥x lsqr
k
−xtrue∥

∥xtrue∥ . The logarithmic values of the relative errors are shown in

Figs. 1-6(c).

Example 1 Consider the severely ill-posed problem A = shaw(1000)[24] with δ = 10−2 and δ = 10−3. Figs. 1-2(a) show that

sinΘ1 is greater than or equal to sinΘ2 at most points for k = 1, 2, . . . , 20, and indicate that the Krylov subspaceKk(A
TA,ATAb)

approximates the k dimensional dominant right singular subspace Vk of Amore accurately than the Krylov subspaceKk(A
TA,ATb)

in most cases, which justifies the Remark 2. Figs. 1-2(b) show that the smallest Ritz values θ
(k)
k of Bk are above σk+1 for

k = 1, 2, . . . , 20. Figs. 1-2(c) show that the solution x r r laqrk obtained by the regularized RRLSQR method has nearly the same

precision as the solution x lsqrk found by the LSQR method. In addition, in order to verify the rationality of (5), we compare

the log|vTk b|, log|vTk btrue | with log|vTk e| for A = shaw(1000) with δ = 10−2. The transition point k0 = 11 of the regularization
parameter of the TSVD method is determined by GCV, which satisfies ∥x tsvdk0

− xtrue∥ = min
1≤k≤n

∥x tsvdk − xtrue∥. Fig. 1(d) shows

that the inequality (5) is reasonable, and the solution x r r laqrk obtained by the regularized RRLSQR method has nearly the same

precision as x tsvdk0
determined by the TSVD method.

For the large-scale ill-posed problems, the TSVD method is time-consuming, and won’t even work due to storage requirements.

For example, for the ill-posed problem A = shaw(10000) with δ = 10−3, the regularized RRLSQR method only needs 87.92s to

get the best regularized solution, while the TSVD method requires 276.45s.
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Figure 1. (a) The comparison between sinΘ1 and sinΘ2;(b) k Ritz values and the first k + 1 large singular values of shaw;(c) The relative errors of RRLSQR

and LSQR; (d) The relative errors of RRLSQR and TSVD

Example 2 Consider the moderately ill-posed problem A = der iv2(1000)[24] with δ = 10−2 and δ = 10−3. Figs. 3-4(a) show

that sinΘ1 are also greater than or equal to sinΘ2 for k = 1, 2, . . . , 20, which means that the Krylov subspace Qk captures
more information about Vk than VRk . From Figs. 3-4(a) we observe that from some k upwards, both sinΘ1 and sinΘ2 almost
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Figure 2. (a) The comparison between sinΘ1 and sinΘ2;(b) k Ritz values and the first k + 1 large singular values of shaw;(c) The relative errors of RRLSQR

and LSQR

equal to 1, which justifies the Remark 3. Figs. 3-4(b) show that the k Ritz values of Bk fail to approximate the large singular

values of A in natural order. The solution x r r laqrk obtained by the regularized RRLSQR method has nearly the same precision as

x lsqrk determined by the regularized LSQR method as shown by Figs. 3-4(c).
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Figure 3. (a) The comparison between sinΘ1 and sinΘ2;(b) k Ritz values and the first k + 1 large singular values of deriv2;(c) The relative errors of RRLSQR

and LSQR

Example 3 Consider the mildly ill-posed problem A = regutm(1000)[24] with δ = 10−2 and δ = 10−3. Figs. 5-6(a) indicate

that both sinΘ1 and sinΘ2 exhibit monotonically increasing tendency, and approach one as k increases faster than both sinΘ1
and sinΘ2 in Figs. 3-4(a) because of

1
2
< α ≤ 1, which confirms our results. Figs. 5-6(b) show that the smallest Ritz value

θ
(k)
k < σk+1 from k = 11 onwards. Figs. 5-6(c) indicate that the solution x

r r laqr
k obtained by the regularized RRLSQR method

has nearly the same precision as x lsqrk computed by the regularized LSQR method.
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Figure 4. (a) The comparison between sinΘ1 and sinΘ2;(b) k Ritz values and the first k + 1 large singular values of deriv2;(c) The relative errors of RRLSQR

and LSQR
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Figure 5. The comparison between sinΘ1 and sinΘ2;(b) k Ritz values and the first k + 1 large singular values of regutm;(c) The relative errors of RRLSQR

and LSQR

Example 4 Consider the ill-posed problem Ax = b, A = regutm(n)[24] with δ = 10−2, n = 200, 400, 800, 1000. The coefficient

matrix A is replaced by A− σn/10I. The resulting problem (A− σn/10I)x = b is inconsistent. We apply the regularized LSQR
method and the regularized RRLSQR method to solve the inconsistent linear system. The numerical results are in Table 1.

From Table 1 we observe that the regularized RRLSQR method gives more accurate computed solutions than the regularized

LSQR method.

6. Conclusions

For large-scale linear discrete ill-posed problems, iterative solvers have received considerable attention over the decades. Of

them, the Krylov iterative solver LSQR is most widely used. In this paper, we develop a variant of the LSQR method, the
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Figure 6. The comparison between sinΘ1 and sinΘ2;(b) k Ritz values and the first k + 1 large singular values of regutm;(c) The relative errors of RRLSQR

and LSQR

n method kδ Res Err

200
LSQR 19 9.3359e-3 1.3424e-1

RRLSQR 90 8.7893e-3 6.3682e-2

400
LSQR 35 8.5513e-3 1.1641e-1

RRLSQR 134 9.1067e-3 5.7006e-2

800
LSQR 62 9.1109e-3 8.2321e-2

RRLSQR 211 9.6155e-3 3.2082e-2

1000
LSQR 72 8.5872e-3 7.2140e-2

RRLSQR 314 9.7773e-3 4.0888e-2

Table 1. The comparison between LSQR and RRLSQR

range restricted LSQR method, and consider the regularization properties of the RRLSQR method and present the regularized

RRLSQR method.

In the analysis of the RRLSQR method, the sinΘ theorems for the 2-norm distances such as ∥sinΘ(Qk ,Vk)∥ and
∥sinΘ(Pk ,Uk)∥ are established, where Qk = Kk(ATA,ATAb) and Pk = Kk(AAT , Ab) are the k dimensional right and left Krylov
subspaces generated by Lanczos bidiagonalization, and Vk and Uk are the k dimensional dominant right and left singular subspaces
of A. Furthermore, the accurate estimates on the distances for the three kinds of ill-posed problems are derived in the simple

singular value case. These theorems show that Krylov subspace Qk captures more information about Vk than Krylov subspace
VRk = Kk(ATA,ATb). To extend our results to the multiple singular value case will constitute our future work.
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