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Exponential Gegenbauer collocation method
for solving the MHD Falkner-Skan equation

Fatemeh Baharifarda

In this paper, we aim to introduce a weighted orthogonal system on the half-line based on the exponential Gegenbauer

functions. We use these functions in collocation method to solve MHD Falkner-Skan equation, which arises in the study

of laminar boundary layers exhibiting similarity on the semi-infinite domain. This method solves the problem on the semi-

infinite domain without truncating it to a finite domain and transforming the domain of the problem to a finite domain.

We make a comparison between the results of the proposed system with the numerical results to show that the present

method has an acceptable accuracy. Copyright c⃝ 2024 Shahid Beheshti University.
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1. Introduction

The Falkner-Skan equation was first introduced by Falkner and Skan [15], when studying the flow over a static wedge immersed

in a viscous fluid. They applied a similarity transformation that can be used to reduce the partial differential boundary layer

equations to a nonlinear third-order ordinary differential equation.

After that, interest and research in this equation and another boundary layer flows has increased [17, 25, 34, 38]. Liao [27]

applied homotopy analysis method, which is independent of small or large physical parameters, to solve the Falkner-Skan equation

and gave an explicit, totally analytical solution for this equation with the boundary conditions. Also, Asaithambi [3, 4] presented

numerical methods based on finite-element, finite-differences methods. A differential transformation method, which obtains a

series solution of the Falkner-Skan equation, is presented in [26].

In addition, developments in engineering have led to an increasing interest in magnetohydrodynamic (MHD) flows. The MHD

viscous flows arise in many important engineering applications in devices such as power generators, the cooling of reactors,

the design of heat exchanges, electrostatic filters, and MHD accelerators, among others [36]. The magnetic fields, one of the

controlling forces, has stabilizing effects on the boundary layer flow [2]. A numerical method for the solution of the Falkner-Skan

equation is presented in [5]. Yih [39] and Ishak et al. [24] transformed the partial differential boundary layer equations into the

nonsimilar boundary layer equations and a system of ordinary differential equations respectively, then they used Keller box method

to solve them. Hayat et al. [23] solved MHD boundary layer flow by modified decomposition method and padé approximation.

Abbasbandy et al. [1, 2] applied a homotopy analysis method and Hankel-padé method respectively. Moreover, authors of [18]

established the existence and uniqueness results for equations arising in MHD Falkner-Skan flow. Also, an approximate solution of

this problem by Hermite functions pseudospectral method has been presented in [31]. Furthermore, some another numerical and

analytical solutions also have been applied to different types of magnetohydrodynamic (MHD) flows problems [16, 29, 22, 32].

As we will describe in the next part of the study, the class of nonlinear third order ordinary differential equations arising in

magnetohydrodynamic (MHD) Falkner-Skan flows is defined over the semi-infinite interval. In the context of spectral methods,

a number of approaches for treating unbounded and semi-infinite domains have been proposed and investigated. Some common

methods are using orthogonal polynomials which are determined over unbounded domains, The most common one is the use

of polynomials that are orthogonal over unbounded domains [13, 28], mapping problem to a bounded domain [21] and domain

truncation method [9]. Another effective direct approach for solving such problems is based on rational approximations. In this

method, a set of new basis functions which are mutually orthogonal on unbounded domain is introduced and applied in a spectral

scheme [12].
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Parand et al. [6, 7, 14, 30], also applied the spectral method to solve nonlinear ordinary differential equations on semi-infinite

intervals. Their approach was based on rational Tau and collocation methods.

The purpose of this paper is to develop the collocation method with new basis functions namely exponential Gegenbauer

functions to solve MHD Falkner-Skan equation. Indeed, we use exponential transformation and have functions in semi-infinite

domain to achieve high precision and exponential rate in convergence of solution.

The remainder of this paper is organized as follows: The mathematical description of MHD flow equation is presented in

Section 2. Section 3 reviews the desirable properties of exponential Gegenbauer functions. In Section 4, we apply the exponential

Gegenbauer collocation method in which we denote EGC to solve Falkner-Skan equation. Finally, Section 5 makes concluding

remarks.

2. Mathematical description

Consider the steady laminar boundary layer flow of an electrically conducting viscous fluid in the presence of a magnetic field

B(x). The induced magnetic field is assumed to be small. This implies a small magnetic Reynolds number, so that magnetic field

and Hall effect are neglected. Furthermore, the electric field as a result of polarization of charges is negligible. The governing

equations within boundary layer approximation can be written as [2]:

∂u

∂x
+
∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
= U

du

dx
+ ν

∂2v

∂y 2
− σB2

ρ
(u − U), (2)

u = v = 0 at y = 0, (3)

u = U(x), when y →∞,

where U(x) = axm [33] and B(x) = B0x
(m−1)/2 [11] and u and v are the velocity components, U is the inherent characteristic

velocity, ν is a kinematic viscosity, σ is the electrical conductivity, ρ is the fluid density, B and B0 are the magnetic field and

externally imposed magnetic field in the y -direction respectively.

Defining

τ =

√
m + 1

2

√
U

νx
y, ψ =

√
2

m + 1

√
νxUf (τ), (4)

u = Uf ′(τ), v = −
√
m + 1

2

√
νU

x
[f +

m − 1
m + 1

τf ′], (5)

the continuity equation is identically satisfied and Eq. (2) and boundary conditions Eq. (3) reduce to the following form

d3f

dτ3
+ f

d2f

dτ2
+ β[1− ( df

dτ
)2]−M2( df

dτ
− 1) = 0, (6)

with boundary conditions

f (0) = f ′(0) = 0, f ′(∞) = 1, (7)

where β = 2m
m+1

and M2 = 2σB20/ρa(1 +m). Now our focus is to find solution of Eq. (6) for wedge in the accelerated flow

(m > 0, β > 0) and decelerated flow (m < 0, β < 0) with separation [2].

3. Exponential Gegenbauer interpolation

In this section, we present exponential Gegenbauer functions and express some of their basic properties of them. Then, we

approximate a function using Gauss integration with exponential Gegenbauer-Gauss points.
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3.1. Properties of exponential Gegenbauer functions

The Gegenbauer polynomials Gαn (y) of order α and of degree n is defined as follow [37]:

Gαn (y) =

⌊n/2⌋∑
j=0

(−1)j Γ(n + α− j)
j!(n − 2j)!Γ(α) (2y)

n−2j , (8)

where n is an integer, α is real number greater than − 1
2
and Γ is the Gamma function.

The Gegenbauer polynomials are orthogonal in the interval [−1, 1] with respect to the weight function ρ(y) = (1− y 2)α−
1
2

where α > − 1
2
. For a fixed α, they can be determined by the following recurrence formula [35]:

Gα0 (y) = 1, Gα1 (y) = 2αy,

Gαn+1(y) =
1

n + 1
[2y(n + α)Gαn (y)− (n + 2α− 1)Gαn−1(y)] , n ≥ 1.

(9)

For applying this polynomials in semi-infinite domain, the new basis functions denoted by Eαn (x) = G
α
n (y) is introduced where

L is a constant parameter and y = 1− 2e−
x
L , y ∈ [−1, 1]. The constant parameter L sets the length scale of the mapping.

Boyd [8] has offered some guidelines for optimizing the map parameter L for rational functions.

Eαn (x) is the nth eigenfunction of the singular Sturm-Liouville problem:

4e−
x
L (1− e−

x
L )Eα

′′
n (x)− (2α+ 1)(1− 2e−

x
L )Eα

′
n (x) + n(n + 2α)E

α
n (x) = 0, (10)

where the prime denotes differentiation with respect to x .

Exponential Gegenbauer functions satisfies in the following recurrence relation:

Eα0 (x) = 1, Eα1 (x) = 2α(1− 2e−
x
L ),

Eαn+1(x) =
1

n + 1

[
2(1− 2e−

x
L )(n + α)Eαn (x)− (n + 2α− 1)Eαn−1(x)

]
, n ≥ 1.

(11)

3.2. Function approximation

We can determine w(x) = 2
L
e−

x
L

[
4e−

x
L (1− e−

x
L )
]α− 12

as a non-negative, integrable, real-valued weight function for exponential

Gegenbauer over the interval I = [0,∞).
Let us denote

ρ(y) = (1− y 2)α−
1
2 , y = 1− 2e−

x
L , (12)

hence, we have
dy

dx
=
2

L
e−

x
L ,

dx

dy
= − L

(y − 1) , w(x)
dx

dy
= ρ(y). (13)

Now, we define

L2w (I) = {v : I → R | v is measurable and ∥ v ∥w<∞}, (14)

where

∥ v∥w = (
∫ ∞

0

| v(x) |2 w(x)dx)
1
2 , (15)

is the norm induced by the scalar product

< u, v >w=

∫ ∞

0

u(x)v(x)w(x)dx. (16)

Thus, {Eαn (x)}n≥0 denotes a system which is mutually orthogonal under Eq. (16), i.e.,

< Eαn , E
α
m >w=

π21−2αΓ(n + 2α)

n!(n + α)[Γ(α)]2
δnm, (17)

where δnm is the Kronecker delta function [35]. This system is complete in L
2
w (I). For any function u ∈ L2w (I), the following

expansion holds

u(x) =

∞∑
k=0

akE
α
k (x), (18)
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with

ak =
< u,Eαk >w

∥ Eαk ∥
2
w

. (19)

The ak ’s are the expansion coefficients associated with the family {Eαk (x)}.
The differentiation formula for exponential Gegenbauer can be obtained as below:

Eα
′
n (x) =

d

dx
Eαn (x) =

4α

L
e−

x
LEα+1n−1 (x). (20)

So, we find that Eα
′
n (x) also are mutually orthogonal in L2ŵ (I) with respect to the weight function ŵ(x) =

L
8α2
e−

x
L

[
4e−

x
L (1− e−

x
L )
]α+ 12

. Hence

< Eα
′
n , E

α′
m >ŵ=

π2−(2α+1)Γ(2α+ n + 1)

(n − 1)!(n + α)[Γ(α+ 1)]2 δnm. (21)

3.3. Exponential Gegenbauer interpolation approximation

Authors of [10, 19] introduced Gauss integration. Here, we define exponential Gegenbauer-Gauss interpolation. Let

EαN = span
{
Eα0 , E

α
1 , ..., E

α
N

}
, (22)

and yj , j = 0, 1, . . . , N, be the N + 1 roots of the polynomial G
α
N+1(y). These points are known as Gegenbauer-Gauss points.

Their corresponding Christoffel numbers are [37]:

22−2απΓ(N + 1 + 2α)

(N + 1)![Γ(α)]2
× 1

(1− yj 2)[ ddy GαN+1(yj)]2
. (23)

We define

xj = −Lln
1− yj
2

j = 0, 1, . . . , N, (24)

which are called exponential Gegenbauer-Gauss nodes. In fact, these points are zeros of the function EαN+1(x). Using Gauss

integration, we have: ∫ ∞

0

u(x)w(x)dx =

∫ 1

−1
u

(
−Lln1− yj

2

)
ρ(y)dy

=

N∑
j=0

u(xj)wj ∀u ∈ Eα2N , (25)

where

wj =
22−2απΓ(N + 1 + 2α)

(N + 1)![Γ(α)]2
× e−

xj
L

L2(1− e−
xj
L )[ d

dx
EαN+1(xj)]

2
, (26)

are the corresponding weights with the N + 1 exponential Gegenbauer-Gauss nodes which can be obtained from Eqs. (23) and

(24).

The interpolating function of a smooth function u on a semi-infinite interval is denoted by PNu. It is an element of E
α
N and is

defined as

PNu(x) =

N∑
k=0

akE
α
k (x). (27)

PNu is the orthogonal projection of u upon EαN with respect to the inner product Eq. (16) and the norm Eq. (15) with

I = [0,∞). Thus because of the orthogonality of the exponential Gegenbauer functions, we have [20]

< PNu − u, Eαi >w= 0 ∀Eαi ∈ EαN . (28)

To apply a collocation method, we consider the residual function, Res(x), when the expansion is substituted into the governing

equation. The ak ’s have to be selected so that the boundary conditions are satisfied, but the residual zero is made at as many

(suitable chosen) spatial points as possible.
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4. Solving Falkner-Skan equation

Now, we want to apply the exponential Gegenbauer collocation (EGC) method to solve the MHD Falkner-Skan equation

introduced in Eq. (6) with the boundary condition in Eq. (7).

Falkner-Skan equation has a boundary condition like f ′(∞) = 1. So, we approximate f (τ) with P̃N f (τ) operator:

P̃N f (τ) = τ +

N∑
k=0

akE
α
k (τ), (29)

then the residual function of MHD Falkner-Skan is:

Res(τ) =
d3

dτ3
P̃N f (τ) + P̃N f (τ)

d2

dτ2
P̃N f (τ) + β(1− [

d

dτ
P̃N f (τ)]

2)

−M2( d
dτ
P̃N f (τ)− 1). (30)

By solving the set of follow equations, we approximate f (τ) and succeed to obtain ak ’s.

Res(τj) = 0, j = 1, 2, ..., N − 1,
P̃N f (0) = 0,

d

dτ
P̃N f (τ)

∣∣∣
τ=0
= 0 (31)

such as τj are exponential Gegenbauer-Gauss points.

In this paper, we solve Falkner-Skan equation for m = 2 with M = 1, 2, 5, 10, 50, 100 and m = −3/5 with M =

3, 4, 5, 10, 15, 20, 50 by equalizing α to 1 in EGC method and various L parameter which has been selected by using the

incremental search method.

The physical quantities of interest represented by the value of f ′′(0) is the skin friction coefficient. In Tables 1 and 2, we

present values of f ′′(0) that obtained by the method proposed in this paper for N = 9, α = 1 and variant M for m = 2 and

m = −3/5 respectively. We compare our results with the numerical value brought in [5] and results obtained by the homotopy
analysis method (HAM) [2] in these Tables. It is shown that the value of f ′′(0) increases with M. So, the presence of a magnetic

field also increases the skin friction and the boundary layer thickness decreases while the skin friction increases.

Table 1. Comparison of f ′′(0) for MHD Falkner-Skan equation when m = 2 between present method by α = 1 and N = 9, HAM

solution [2] and numerical results [5].

M L EGC HAM Numerical

1 1.48520 1.71946540 1.71947219 1.71946540

2 0.88870 2.43949833 2.43949870 2.43949833

5 0.52500 5.19095945 5.19095980 5.19095945

10 0.38090 10.09677545 10.09677575 10.09677545

50 0.10045 50.01944071 50.01944084 50.01944071

100 0.05006 100.00972170 100.00972177 100.00972170

Table 2. Comparison of f ′′(0) for MHD Falkner-Skan equation when m = −3/5 between present method by α = 1 and N = 9,
HAM solution [2] and numerical results [5].

M L EGC HAM Numerical

3 1.62390 2.27338836 2.27338419 2.27338836

4 0.75600 3.48814857 3.48814572 3.48814857

5 0.59295 4.60075494 4.60075228 4.60075494

10 0.29693 9.80646420 9.80646300 9.80646420

15 0.19882 14.87167484 14.87167401 14.87167484

20 0.14933 19.90393701 19.90393626 19.90393701

50 0.09850 49.96165233 49.96165198 49.96165233

Tables 3 and 4 represent the coefficients of the exponential Gegenbauer functions obtained by the present method for some

various values ofM form = 2 andm = −3/5, respectively. Taking these tables into account, one can see that a rapid convergence
rate can be obtained by the implemented method even with small N.

Figures 1 and 2 show the velocity boundary layer of the wedge (f ′(τ)) with m = 2 and m = −3/5 for various M, respectively.
According to these figures, The M parameter is directly related to the fluid velocity.
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Table 3. Coefficients of the exponential Gegenbauer functions obtained by the present method for m = 2.

ak
k M = 1 M = 5 M = 100

0 −4.0038986944e − 01 −1.4506084106e − 01 −8.7116169937e − 03
1 −1.0925473962e − 01 −4.2677138776e − 02 −1.6094397890e − 03
2 5.1882881092e − 02 1.7110940525e − 02 1.0740181273e − 03
3 −8.4348620153e − 03 −2.2451211136e − 03 −4.3029996993e − 04
4 −1.4294689337e − 03 −1.3528450761e − 04 9.8059310914e − 05
5 1.5709776978e − 04 −1.3721578448e − 05 −9.8602008486e − 06
6 1.1223313109e − 04 −2.0923890910e − 06 4.1673710101e − 09
7 3.0523943488e − 05 −2.6795843395e − 07 5.3159656285e − 10
8 4.9529492128e − 06 −1.4166451262e − 08 6.3506911769e − 11
9 3.7867583691e − 07 1.8900016709e − 09 9.6064567202e − 12

Table 4. Coefficients of the exponential Gegenbauer functions obtained by the present method for m = −3/5.

ak
k M = 3 M = 5 M = 50

0 −3.7242566782e − 01 −1.6652118555e − 01 −1.7390428859e − 02
1 −9.1284596190e − 02 −5.0163358752e − 02 −3.2633391168e − 03
2 4.7826599199e − 02 1.9203779995e − 02 2.1515696863e − 03
3 −1.1026298019e − 02 −2.2359776043e − 03 −8.4459208440e − 04
4 1.8751409647e − 04 −1.1530609130e − 04 1.8563716651e − 04
5 −8.1833868063e − 05 −4.1578620138e − 05 −1.7192791185e − 05
6 1.3969852283e − 03 −6.3170419849e − 06 −1.1449852684e − 07
7 2.0380714255e − 05 −1.6572245379e − 06 −1.7144633772e − 08
8 2.3755051305e − 06 −3.5922426864e − 07 −8.7164656535e − 10
9 −6.6885828037e − 07 −4.7089391297e − 08 −2.8265562291e − 10

Figure 1. Graph of approximations of f ′(τ), for Falkner-Skan equation with

m = 2 and various M.
Figure 2. Graph of approximations of f ′(τ), for Falkner-Skan equation with

m = −3/5 and various M.

Finally, the logarithmic graph of absolute coefficients |ai | of the exponential Gegenbauer functions presented in Tables 3 and
4 are shown in Figures 3 and 4. These graphs illustrate the convergence rate of the method with a descending behavior and

imply that accurate solutions can be obtained after relatively few iterations of the collocation method.
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Figure 3. Logarithmic graph of absolute coefficients |ak | of the exponential
Gegenbauer functions for m = 2.

Figure 4. Logarithmic graph of absolute coefficients |ak | of the exponential
Gegenbauer functions for m = −3/5.

5. Conclusions

In this paper, we introduced exponential Gegenbauer functions in [0,∞) interval and applied the collocation method based
on these functions to solve the MHD Falkner-Skan equation. Collocation method is easy to implement and yields the desired

accuracy. An important concern of the collocation approach is the choice of basis functions. The basis functions have three

different properties: easy computation, rapid convergence and completeness, which means that any solution can be represented

to arbitrarily high accuracy by taking the truncation N to be sufficiently large. We used exponential Gegenbauer functions as the

basis function in this paper. Collocation method with these functions can solve the problems on the semi-infinite domain, such

as boundary layer equation without truncating them to a finite domain, imposing the asymptotic condition and transforming

domain of the problems. MHD Falkner-Skan equation arises in the study of laminar boundary layers. By selecting suitable values

of characteristic velocity and an applied magnetic field, the resulting partial differential equations are reduced to a third-order

nonlinear ordinary differential equation in the semi-infinite domain. The difficulty of applying these types of equations, due to

the existence of its boundary condition in the infinity, is overcomed here. The validity of the method is based on the assumption

that it converges by increasing the number of Gauss points. A comparison of the values of f ′′(0) with numerical solution has

shown that the new method is rapidly convergent.
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