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Covid-19 disease is a respiratory illness caused by SARS-Cov-2 and poses a serious public health risk. It usually spread

from person-to-person. The fractional- order of covid-19 was determined and basic reproduction number using the next

generation matrix was calculated. The stability of disease-free equilibrium and endemic equilibrium of the model were

investigated. Also, sensitivity analysis of the reproduction number with respect to the model parameters were carried out.

It was observed that in the absence of infected persons, disease free equilibrium is achievable and is asymptotically stable.

Numerical simulations were presented graphically. The results of the model analysis indicated that R0 < 1 is adequate

enough to reducing the spread of disease and disease persevere in the population when R0 > 1 The numerical results

showed that effective vaccination of the population helps in curtailing the spread of the viral disease.

In order to know whether the disease may die out or persist, basic reproduction number, R0 was obtained using Next

Generation Matrix Method. It was observed that the value of R0 is high when the depletion of awareness programme is

high while the value of Ro is very low when the rate of implementation of awareness programme is high. So, neglecting the

implementation of awareness program can have serious effect on the population. The model shows the implementation of

awareness program is the key eradication to the pandemic.
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1. Introduction

A global outbreak of COVID-19 has taken place, with new outbreaks emerging in Wuhan, China in December 2019. When a

large number of patients were admitted to hospitals in late December 2019 with pneumonia, it was clear that the epidemic had

started [18]. At first, doctors in Wuhan, Hubei Province, China suspected the seafood and wet animal market to be the cause.

According to the World Health Organization (WHO), COVID, also known as Coronavirus Disease 2019, is caused by the Severe

Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus [1]. In March 2020, the World Health Organization (WHO)

declared the COVID-19 pandemic. The index case was confirmed in Nigeria on February 27, 2020, leading to the establishment

of a multi-sectoral Emergency Operations Center by the Nigerian Center for Disease Control (EOC), with a total of 11,516

cases and 323 deaths reported [1].

Professionals have proposed various hypotheses to explain the peculiar behaviors of COVID-19. A mathematical model was found

to include undiagnosed infectious cases, hospital sensitization conditions, and a proportion of known cases [16]. A study on the

analysis of Mathematical model of COVID-19 incorporated with vaccination and media induced fear was studied in [7]. The
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studies shows that vaccination of susceptible individuals is an effective strategy to curb the spread of COVID-19. The impact

of mask use on the general public was investigated using a mathematical model [11]. A new mathematical model of COVID-

19, accounting for the effects of first and second doses of vaccination, was presented [5]. The basic reproduction number, an

epidemic indicator, was obtained and stability analysis criteria determined. The study concluded that double-dose vaccination

was the best way to curb the spread of COVID-19. Researchers also studied the impact of COVID-19 infections on social

interactions, showing that social awareness and speedy testing had an impact on a COVID-19 transmission model [21, 17].

The research considered both known and unknown COVID-19 infections during the exposed phase of infection. The influence

of public awareness efforts on the dynamics of COVID-19 infection was studied [19]. Advancing in research, [8] analysed the

impact of media Campaign on the transmission of COVID-19 epidemics using stochastic model analysis. The effectiveness of

the introduced strategy in eradicating the spread of COVID-19 was observed as infected individuals in their population model

drastically get reduced. Also, [14] carried out a dynamical analysis and proposed control strategies for capturing the spread

of COVID-19 and a conceptual analysis of the concurrent impact of vaccination, treatment and curfew were studied by [15].

Numerical techniques, such as the Adomian Decomposition Method [2], the Variational Iteration Method [13], and the Homotopy

Perturbation Method [12] and its modifications[3], are also used by researchers to obtain approximate solutions. The homotopy

perturbation method was used to analyze the Equine Infectious Anemia Virus (EIAV) model [6] and to obtain an approximate

solution to a fractional-order integral-differential equation [4]. These results converge faster to the exact solution compared to

other numerical methods. The future condition of COVID-19 in Bangladesh was discussed by analyzing current data with an SIR

model [9]. Also the researches involving the applications of Laplace Adomian Decomposition Method for numerical simulations

include [23] who solved an epidemiological mathematical model of COVID-19 using the Laplace Adomian decomposition method

to investigate the effect of Caputo-Fractional order in the dynamics of population distribution to the disease prevalence. Research

into an effective COVID-19 vaccination continues, with a new mathematical model of the COVID-19 pandemic, including the

vaccination campaign, being studied [22]. Vaccine hesitancy, defined as a delay or refusal in accepting vaccination despite its

availability, was studied through a cross-sectional survey of health students to determine the determinants of COVID-19 vaccine

acceptance and hesitancy [24]

As a motivation and subject of active research, we endeavors to examine the transmission dynamics of COVID-19 in a theoretical

population through the development of a mathematical model. Additionally, we aim to evaluate the impact of government-led

awareness campaigns on the spread of the virus

2. Material and Methods

2.1. Model Formulation

We propose a deterministic mathematics model on the transmission dynamics of COVID-19, the population under consideration

is divided seven classes, based on the epidemiological status of individual in population, the compartments are Susceptible

S(t); These are individuals who are susceptible or prone to COVID-19, Exposed class E(t); These are individuals who are

infected with Covid-19 without any signs and symptoms; individuals in this class can infect those in the susceptible class,

Infected class P (t); These are individuals who are infected with Covid-19 and are with signs and symptoms, those in this

group are capable of transmitting the disease to the susceptible individuals, Quarantine class Q(t); These are individuals

who are exposed to Covid-19 and are restricted to prevent the spread of the disease. A(t) represent individuals who are

asymptomatic, H(t) represent hospitalized individual. The total population size N(t) is assumed to be constant and well mixed,

that is N (t) = S (t) + E (t) + A (t) + P (t) + H (t) +Q (t) . The model equations are given as follows:

dS
dt
= Λ(1− V )− BSP − µS

dE
dt
= BSP − (µ+ ρ+ r + θ)E

dA
dt
= ρE − (k1 + µ)A

dP
dt
= rE − q (1 + y)P + nQ− (µ+ b)P

dQ
dt
= θE − (µ+ n + η)Q

dH
dt
= q(1 + y)P − (µ+K2)H

dR
dt
= Λv + k1A+ bP + ηQ+ k2H − µR

(1)
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Figure 1:Schematic Diagram of the Proposed COVID-19 Model

Table 1: Variables, parameters with their descriptions

Variables Descriptions

S(t) Susceptible individuals.

E(t) Exposed individuals.

A(t) Asymptotic.

P (t) Infected individuals.

H(t) Hospitalized

Q(t) Quarantine individuals

R(t) Recovered individuals.

V Rate of Vaccination.

y Rate of Enlightenment.

R Rate at which exposed individuals moves the systematic infectious class.

B Effective contact rate of the infection

γ Recovery rate

M Death rate

Λ Recruitment rate

Q Rate of transmission from P to H dose of vaccine rate

N Rate of transmission from P to Q dose of vaccine rate

3. Mathematical Analysis.

3.1. Positivity of Solution

Theorem 1 Given S0 > 0, E > 0, A > 0, P > 0, Q > 0, H > 0 and R > 0.Then the

solution
{(
S,E, A, P,H,Q,R ∈ ℜ7 : N ≤ Λ

µ

)}
are positive invariant for t ≥ 0

proof. Recall from (1),
dS

dt
= Λ(1− V )− BSP − µS

therefore,
dS

dt
≥ −(µ+ Bp)S

dS(t)

S(t)
≥ −(µ+ BP )dt (2)

Solving (2) via separation of variable technique with the application of the initial condition, yields;

S(t) ≥ S0e−(µ+BP )t ≥ 0 (3)

Repeating the same procedure for the rest of the equations we have,

E(t) ≥ E0e−(ρ+θ+r+µ) ≥ 0 (4)
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A(t) ≥ A0e
−(k1+µ+δ1 ) ≥ 0 (5)

E(t) ≥ E0e−(µ+λ+ρ) ≥ 0 (6)

P (t) ≥ P0e−(µ+δ2+b+q+qy) ≥ 0 (7)

Q(t) ≥ Q0e−(µ+n+η) ≥ 0 (8)

H(t) ≥ H0e−(µ+δ3+K2) ≥ 0 (9)

R(t) ≥ R0e−µ ≥ 0 (10)

Therefore, the model’s solution yields a positive outcome. This concludes the proof of the theorem, as it satisfies all fundamental

characteristics of an epidemiology model. Consequently, we can assert that the suggested model is appropriate for investigating

COVID-19 within the human population. �

3.2. Existence and Uniqueness of Solution

The Lipchitz criterion will be employed to verify the existence and uniqueness of the solution. Thus from (2),

Let:
g1 = Λ(1− V )− BSP − µS
g2 = (µ+ ρ+ r + θ)E

g3 = ρE − (k1 + µ)A
g4 = rE − q(1 + y)P + nQ− (µ+ b)P
g5 = θE − (µ+ n + η)Q
g6 = q(1 + y)P − (µ+K2)H

(11)

Theorem 2 Let E1 represent the region 0 ≤ w ≤ R, then the system of (1) has a unique solution, provided that
∂fi
∂xi
, i = 1, 2, · · · , 6 are bounded and continuous.

proof. From (1) we obtain the following partial derivative given below:∣∣ ∂g1
∂S

∣∣ =∣∣−BP−µ
1+αP

∣∣ <∞,∣∣ ∂g1
∂E

∣∣ = |0| <∞,∣∣ ∂g1
∂A

∣∣ = |0| <∞,∣∣ ∂g1
∂P

∣∣ = ∣∣∣ −BS
(1+αI)2

∣∣∣ <∞,∣∣ ∂g1∂Q ∣∣ = |0| <∞, ∣∣ ∂g1∂H ∣∣ = |0| <∞,∣∣ ∂g1
∂R

∣∣ = |0| <∞
For g2 =

BSP
1+αP

− (µ+ ρ+ r + θ)E∣∣ ∂g2
∂S

∣∣ = ∣∣ BP
1+αP

∣∣ <∞, ∣∣ ∂g2
∂E

∣∣ = |−(µ+ ρ+ δ1)| <∞, ∣∣ ∂g2∂A ∣∣ = |0| <∞, ∣∣ ∂g2∂P ∣∣ = ∣∣∣ BS
(1+αI)2

∣∣∣ <∞, ∣∣ ∂g2∂Q ∣∣ = |0| <∞,∣∣ ∂g2
∂H

∣∣ = |0| <∞, ∣∣ ∂g2
∂R

∣∣ = |0| <∞, ∣∣ ∂g3
∂S

∣∣ = |0| <∞, ∣∣ ∂g3
∂E

∣∣ = |P | <∞, ∣∣ ∂g3
∂A

∣∣ = |−(µ+ k1 + δ)| <∞, ∣∣ ∂g3∂P ∣∣ = |0| <∞,∣∣ ∂g3
∂Q

∣∣ = |0| <∞, ∣∣ ∂g3
∂H

∣∣ = |0| <∞, ∣∣ ∂g3
∂R

∣∣ = |0| <∞ ∣∣ ∂g4
∂S

∣∣ = |αI| <∞, ∣∣ ∂g4
∂E

∣∣ = |ρ| <∞, ∣∣ ∂g4
∂A

∣∣ = |0| <∞∣∣ ∂g4
∂P

∣∣ = |−g(1 + y)− (µ+ δ2 + b)| <∞, ∣∣ ∂g4∂Q ∣∣ = |n| <∞, ∣∣ ∂g4∂H ∣∣ = |0| <∞,∣∣ ∂g4
∂R

∣∣ = |0| <∞, ∣∣ ∂g5
∂S

∣∣ = |0| <∞, ∣∣ ∂g5
∂E

∣∣ = |θ| <∞, ∣∣ ∂g5
∂A

∣∣ = |0| <∞, ∣∣ ∂g5
∂P

∣∣ = |0| <∞∣∣ ∂g5
∂Q

∣∣ = |−µ+ n + η| <∞, ∣∣ ∂g5
∂H

∣∣ = |0| <∞, ∣∣ ∂g5
∂R

∣∣ = |0| <∞ ∣∣ ∂g6
∂S

∣∣ = |0| <∞, ∣∣ ∂g6
∂E

∣∣ = |0| <∞, ∣∣ ∂g6
∂A

∣∣ = |0| <∞,∣∣ ∂g6
∂P

∣∣ = |q(1 + y)| <∞, ∣∣ ∂g6
∂Q

∣∣ = |0| <∞,∣∣ ∂g6
∂H

∣∣ = |−(µ+ δ2 + k2)| <∞, ∣∣ ∂g6∂R ∣∣ = |0| <∞, ∣∣ ∂g7∂S ∣∣ = |0| <∞, ∣∣ ∂g7∂E ∣∣ = |0| <∞, ∣∣ ∂g7∂A ∣∣ = |k1| <∞∣∣ ∂g7
∂P

∣∣ = |b| <∞, ∣∣ ∂g7
∂Q

∣∣ = |η| <∞, ∣∣ ∂g7
∂H

∣∣ = |k2| <∞, ∣∣ ∂g7∂R ∣∣ = |−µ| <∞ �

4. Equilibrium Analysis

In this section, the disease free and endemic equilibria of the model will be discussed.

Disease free equilibrium

At the disease-free equilibrium state of system (1), i.e. when the infection is absent (I = 0) and the following result is obtained:

(S0, E0, A0, P0, Q0, H0) = (−
(−1 + V )Λ

µ
, 0, 0, 0, 0, 0) (12)
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Endemic equilibrium state

At the endemic equilibrium state, when I ̸= 0, the equilibrium points given by E∗ = (S∗, E∗, A∗, P ∗, Q∗, H∗) are obtained as:

S∗ = Λcαrh+df h+dhg+Λcαnθ
(rh+θn)(B+µα)

E∗ = hΛCBr−hdµf−hdµg+ΛCBnθ
d(Brh+Bnθ+µαrh+µαnθ)

A∗ = ρ(hΛCBr−hdµf−hdµg+ΛCBnθ)
d(Brh+Bnθ+µαrh+µαnθ)e

P ∗ = h(ΛCBr−hdf µ−hdµg+ΛCBnθ)
(f+g)h(B+µα)d

Q∗ = θ(hCBrΛ−hdµf−hdµg+ΛCBnθ)
d(Brh+Bnθ+µαrh+µαnθ)h

H∗ = f (hCBrΛ−hdµf−hdµg+ΛCBnθ)
(f+g)h(B+µα)dj

R∗ =

(µk1ρjh
2dj2 + µk1ρjh

2df 2 − µk2ρef 2h2dr + k2h2ef ΛCBr 2 + 2k2ef hΛBCrnθ − k1ρjh2ΛCBrf

+k2n
2ef ΛCBθ2)

heju(f+g)(B+µα)d(rh+nθ)

Where c = 1− V , d = θ + ρ+ µ+ r , e = µ+ k1 + δ1, f = (1 + y), g = µ+ δ2 + b and h = µ+ n + η j = µ+ δ3 + k2

5. Basic Reproduction Number

The basic reproduction number, conventionally denoted by R0 is defined by Diek-mann and Heesterbeek [10] as the average

number of secondary infections generated by a typical infectious individual during his or her entire period of infectiousness.

Considering three compartmentsE, Q, P .

E = BSP
1+αP

− (µ+ ρ+ r + θ)E

P = ρE − q(1 + y)P + nQ− (µ+ δ2 + b)P

Q = θE − (µ+ n + η)Q

(13)

F =

 0 αS 0

0 0 0

0 0 0

 V =

 (µ+ ρ+ r + θ) 0 0

−ρ (µ+ δ2 + b) 0

0 0 0

 (14)

G = F × V −1 =


1

(µ+δ2+b)(µ+ρ+r+θ)
−ρ

(µ+δ2)(µ+δ2+b)(µ+ρ+r+θ)
0

0 1
(µ+ρ)(µ+δ2+b)

−θ
(µ+δ)(µ+δ2+b)(µ+ρ+r+θ)

0 0 1
(µ+ρ)(µ+δ+r+θ)


Computing the spectral radius of matrix G yields the R0 given by:

R0 =
αϕ(ω + σ + µ)β

(µ+ ρ)(µ+ δ + ω)(µ+ δ + τ + ϕ)[µ(η + ω + σ + µ) + ησ]
(15)

6. Stability Analysis

6.1. Local Stability Analysis of Diseases free Equilibrium

Lemma 1: The disease-free equilibrium of the model is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

proof: We consider the Jacobian of the system of equation (1) which is given by:

J(X0) =



−µ 0 0 −BΛC
µ

0 0

0 −d 0 0 0 0

0 0 0 0 0 0

0 0 0 −(ρ+ µ) αS0 0

0 0 0 ρ −(ϕ+ δ + µ+ τ) 0

0

0

0

0

0

−k1
0 k2 −µ


(16)
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Then eigenvalues are:

λ1 = −µ− 1
2
(ρ+ σ + τ + η) + 1

2

√
ρ(ρ− 2σ − 2τ + 4αS0 − 2η) + η(η + 2σ + 2τ) + σ2 + 2στ + τ2

λ2 = −µ− 1
2
(ρ+ δ + τ + η)− 1

2

√
ρ(ρ− 2Λ− 2τ + 4αS0 − 2η) + η(η + 2δ + 2τ) + δ2 + 2δτ + τ2

λ3 = −µ− 1
2
(ω + η − µ) + 1

2

√
α2 + 2αη + 2αδ + η2 − 2ηδ + δ2

λ4 = −µ− 1
2
(α+ η + σ)− 1

2

√
δ2 + 2µη + 2µΛ + η2 − 2ησ + σ2

λ5 = −(µ+ ∧)

λ6 = −(µ+ k1 + µ)
Since the eigenvalues are all negatives, we therefore conclude that the disease-free equilibrium state of the Covid-19 model is

locally asymptotically stable.

6.2. Local Stability Analysis of Endemic Equilibrium

Theorem: Endemic equilibrium state is locally asymptotically stable if the determinant of a Jacobian matrix is greater than zero

and the trace of the same matrix is less than zero [20]

proof. The stability analysis of the Endemic Equilibrium is carried out using the trace and the determinant approach, where

the Jacobian J∗of

J∗ =



A θ 0 0 G 0

η B 0 0 0 0

0 δ C 0 0 0

M 0 0 D K 0

0 0 0 ρ E 0

0 0 0 0 φ F

 (17)

Where,

A = − (αP ∗ + η + µ) , B = − (k1 + δ + µ) , C = − (µ+ ∧) , D = − (ρ+ µ) , E = − (θ + δ + µ+ τ) ,
F = − (δ + k + µ) , G = −αS∗, K = αS∗, M = αP ∗

Hence

Det (J∗) = (ABDE − ABKρ+ BGMρ−DEηα+Kηδρ)CF
It is clearly seen that det.(J∗) > 0.

AlsoT race of (J∗) = [− (αP ∗ + η + µ)− (ρ+ σ + µ)− (µ+ ∧)− (ρ+ µ)− (θ + δ + µ+ τ)− (δ + k + µ)]
That is, − [(αI∗ + η + µ) + (ω + σ + µ) + (µ+ ∧) + (ρ+ µ) + (ϕ+ δ + µ+ τ) + (δ + k + µ)] < 0 .
Hence, the trace of (J∗) < 0. Thus, the system (J∗) has eigenvalues that contains negative real parts; therefore, we conclude

that the endemic equilibrium system is locally asymptotically stable. �

6.3. Global Stability at Disease Free Equilibrium

To proof the global stability, we make use of Castillo-Chavez method (Castillo et al 2004). Consider a model of the form
dP
dt
= D(P,Q)

dQ
dt
= F (P,Q), F (P, 0) = 0

(18)

Where P ∈ Rnrepresents, individuals that are not infected in the population and T ∈ Rn represent infected individuals. Following
the above representation, the Disease-free equilibrium state can be written as T0 = (P0, 0),the two conditions given below is

used to verify the disease-free equilibrium is globally asymptotically stable.

(M2)F (P, T ) = AT − F (P, T ) , where F (P, T ) ≤ 0∀ (P, T ) ∈ Ω

Here, A = BvF (P0, 0) denote an M-matrix.

Lemma 1 Q0 = (P0, 0)is globally asymptotically stable if R0 ≤ 1 and assumption that (M1)− (M2) are satisfied.

Theorem 3 If R0 < 1, the disease-free equilibrium is globally asymptotically stable and unstable if R0 > 1
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proof. For (M1) we consider
dP
dt
= D(P, 0)

Here

D (P, 0) =

 Λ(1− V ) −µS
BSP
1+αP

−(µ+ ρ+ r + θ)E
ρE −(k1 + µ+ δ1)A

 (19)

The corresponding Jacobian matrix is

JD(P,0) =

 −(µ+ η) ω 0

η −(ω + ρ+ µ) 0

0 ρ −(µ+ ∧)

 (20)

Characteristics polynomial is given as:

λ3 + (µ+ δ + 2µ+ ∧+ η + θ)λ2 +
(
2µ2 + 2δη + 2µη + 2θµ+ µ ∧+θη + ∧η + θ ∧+δµ+ δ ∧+µ∧

)
λµ3 + (α+ δ + ∧+ η)µ2

+(2δη + ρ+ ∧+ ρ ∧ δ + ση + ∧η)µ+ (2δ ∧+σ∧) η

Next, for (M2), we consider
dQ
dt
= F (P, T )

That is,

F (P, T ) =

 rE −q (1 + y)P + nQ− (µ+ δ2 + b)P
θE − (µ+ n + η)Q

q (1 + y)P − (µ+ δ2 + k2)H

 (21)

F (P, T ) = AT −
∧
F (P, T )

Hence, A is M-Matrix and
∧
F (P, T ) ≥ 0

⇒ (M1) and (M2) Conditions are satisfied. �

6.4. Global Stability of Endemic Equilibrium Point

Theorem 4 If R0 > 1, the endemic equilibrium point of the model equation (1) is globally asymptotically stable

proof. To establish the global stability of the endemic equilibrium of the model, the following Lyapunov function can be

constructed such that,

V (s∗, e∗, a∗, p∗, q∗, h∗) =
(
S − S∗ − S∗ log S∗

S

)
+

(
E − E∗ − E∗ log E∗

E

)
+

(
A− A∗ − A∗ log A∗

A

)
+
(
P − P ∗ − P ∗ log P ∗

P

)
+

(
Q−Q∗ −Q∗ log Q∗

Q

)
+

(
H −H∗ −H∗ log H∗

H

) (22)

The derivative of N along this solution of equation (25) by direct calculation gives:

dN

dt
=

(
S − S∗

S

)
dS

dt
+

(
E − E∗

E

)
dE∗

dt
+

(
A− A∗

A

)
dA∗

dt
+

(
P − P ∗

P

)
dP

dt
+

(
Q−Q∗

Q

)
dQ

dt
+

(
H −H∗

H

)
dH

dt

Where
dS∗

dt
= Λ(1− V )− BSP

1+αP
− µS,

dE∗

dt
= BSP
1+αP

− (µ+ ρ+ r + θ)E, dA∗
dt
= ρE − (k1 + µ+ δ1)A

dP ∗

dt
= rE − q(1 + y)P + nQ− (µ+ δ2 + b)P

dQ
dt

∗
= θE − (µ+ n + η)Q,

dH∗

dt
= q (1 + y)P − (µ+ δ2 + k2)

(23)

Thus, we have(
S−S∗
S

) [
Λ− ΛV − µS − BSP

1+αP

]
+

(
E−E∗
E

) [
BSP
1+αP

− (µ+ ρ+ r + θ)E
]
+

(
A−A∗
A

)
[ρE − (k1 + µ+ δ1)A] +

(
P−P ∗
P

)
[rE − q(1 + y)P ]

+
(
Q−Q∗
Q

)
[θE − (µ+ n + η)Q] +

(
H−H∗
H

)
[q (1 + y)P − (µ+ δ2 + k2)H]

(24)
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This implies;

− (S−S
∗)2

S
B(P−P ∗)2

1+α(P−P ∗)2 −
(S−S∗)2
S
µ− (E−E∗)2

E
(µ+ ρ+ r + θ)− (A−A∗)2

A
(k1 + µ+ δ2)− (P−P ∗)2

P
q (1 + y))

− (P−P
∗)2

P
(µ+ δ2 + b)− (Q−Q∗)2

Q
(µ+ n + η)− (H−H∗)

H
(k2 + µ+ δ2) + (Λ(1− V )) + B((S−S∗)(P−P ∗)

1+α(P−P ∗)

+ρ (E−E
∗) r (E − E∗) + n (Q−Q∗) + θ (E − E∗) + q (1 + y) (P − P ∗)

(25)

Collecting the positive and negative terms we obtain

dv

dt
= M − N

Where

M = − (S−S
∗)2

S
B(P−P ∗)2

1+α(P−P ∗)2 −
(S−S∗)2
S
µ− (E−E∗)2

E
(µ+ ρ+ r + θ)− (A−A∗)2

A
(k1 + µ+ δ2)

− (P−P
∗)2

P
q (1 + y))− (P−P ∗)2

P
(µ+ δ2 + b)− (Q−Q∗)2

Q
(µ+ n + η)

(26)

Also,

N = − (H−H
∗)

H
(k2 + µ+ δ2) + (Λ(1− V )) + B((S−S∗)(P−P ∗)

1+α(P−P ∗) + ρ (E−E
∗) r (E − E∗)

+n (Q−Q∗) + θ(E − E∗) + q(1 + y)(P − P ∗)
(27)

If M < N,Then dv
dt
will be negative.

dv
dt
= 0; if and only if

S = S∗, E = E∗, A = A∗, P = P ∗, Q = Q∗andH = H∗

Thus the largest compact invariant set is
{
(s∗, e∗, a∗, p∗, q∗, h∗) ∈ Ω : dv

dt
= 0

}
is just the singleton set {E∗} Thus the endemic

equilibrium, by LaSalle’s Invariant principles; it implies that E∗is Globally Asymptotically Stable (GAS) in Ω if M < N. �

7. Numerical solution and Simulations

Laplace Adomian Decomposition Method (LADM)

In this section, the Laplace-Adomian decomposition method is employed to solve the system of differential equations, and the

obtained approximate solution of the model is applied to conduct numerical simulations.

Definition 1:

Let f (t) be a given function defined for all positive real numbers t ≥ 0, the following properties hold for Laplace transform:

• The Laplace transform of f (t) is the function f (s) given by: f (s) =
∫∞
0
e−st f (t)dt

• The Laplace transform of function f (t) with order η is defined as

L[f η(t)] = αηL[f (t)]− αη−1L[f (0)]− αη−2L[f ′(0)− αη−3L[f ′′(0)]

• The inverse Laplace transform of function f (s)
s
is given by:

L−1
f (s)

s
=

∫ t

0

f (t)dt

Definition 2:

The Adomian polynomials, is a recursive formula given by An(t) =
∑∞
n=0

1
n

(
t d
dt

)
An−1(t).

Model solution vial LADM

Consider system (1) given by
dτ1S(t)

dt
= Λ (1− v)− BSP − µS

dτ2E(t)

dt
= BSP − (µ+ ρ+ r + θ)E

dτ3A(t)

dt
= ρE − (K1 + µ)A
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dτ4P (t)

dt
= rE − q (1 + y)P + nQ− (µ+ b)P (3.53)

dτ5Q(t)

dt
= θE − (µ+ n + η)Q

dτ6H(t)

dt
= q (1 + y)P − (µ+K2)H

Where τ1, τ2, τ3, τ4, τ5 and τ6 are the fractional orders.

Taking the Laplace Transform of the equations, we have

L (Dτ2E(t)) = L (BSP − (µ+ ρ+ r + θ)E)

L (Dτ3A(t)) = L (ρE − (K1 + µ)A)
L (Dτ4P (t)) = L (rE − q (1 + y)P + nQ− (µ+ b)P ) (3.54)

L (Dτ5Q(t)) = L (θE − (µ+ n + η)Q)
L (Dτ6H(t)) = L (q (1 + y)P − (µ+K2)H)

Using the property of Laplace Transform and initial conditions to the above equations.

L (S(t)) = 1
s
So +

1
sτ1
L (Λ (1− v)− BSP − µS)

L (E(t)) = 1
s
Eo +

1
sτ2
L (BSP − (µ+ ρ+ r + θ)E)

L (A(t)) = 1
s
Ao +

1
sτ3
L (ρE − (K1 + µ)A)

L (P (t)) = 1
s
Po +

1
sτ4
L (rE − q (1 + y)P + nQ− (µ+ b)P )

L (Q(t)) = 1
s
Qo +

1
sτ5
L (θE − (µ+ n + η)Q)

L (H(t)) = 1
s
Ho +

1
sτ6
L (q (1 + y)P − (µ+K2)H)

(28)

So, writing the solution of each compartment in from of infinite series result to and the non-linear terms can be decomposed by

Adomian polynomials:

S(t) =

∞∑
i=0

Si , E(t) =

∞∑
i=0

Ei , A(t) =

∞∑
i=0

Ai , P (t) =

∞∑
i=0

Pi , S(t) =

∞∑
i=0

Si , Q(t) =

∞∑
i=0

Qi , H(t) =

∞∑
i=0

Hi

and S(t)p(t) =
∑∞
i=0 Ci where Ci =

1√
n+1

dn

dt n

[∑n
k=0 λ

kδk
∑n
k=0 λ

kpk
]
λ = 0

Assume, S(0) = m1, E(0) = m2, A(0) = m3, P (0) = m4, Q(0) = m5, H(0) = m6.

Applying the initial value to equation (29) gives:∑∞
i=0 L (Si(t)) =

m1
s
Eo +

1
sτ1
L
(
Λ (1− v)− B

∑∞
i=0 CnP − µSn

)
∑∞
i=0 L (Ei(t)) =

m2
s
+ 1
sτ2
L
(
B
∑∞
i=0 Cn − (µ+ ρ+ r + θ)En(t)

)
∑∞
i=0 L (Ai(t)) =

m3
s
+ 1
sτ3
L (ρEn(t)− (K1 + µ)An(t))∑∞

i=0 L (Pi(t)) =
m4
s
+ 1
sτ4
L ((rEn(t)− q (1 + y)Pn(t) + nQn(t)− (µ+ b)Pn(t)))∑∞

i=0 L (Qi(t)) =
m5
s
+ 1
sτ5
L ((θEn(t)− (µ+ n + η)Qn(t)))∑∞

i=0 L (Hi(t)) =
m6
s
+ 1
sτ6
L (q (1 + y)Pn(t)− (µ+K2)Hn(t))

(29)

Comparing both sides of equation (30) gives

S0(t) = m1, E0(t) = m2, A0(t) = m3, P0(t) = m4, Q0(t) = m5, H0(t) = m6

L (S1(t)) =
−Bm1m4−m1µ+λ(1−v)

sτ1+1

L (E1(t)) =
Bm1m4−m2(µ+ρ+r+θ)

sτ2+1

L (A1(t)) =
m2ρ−m3(k1+µ)

sτ3+1

L (P1(t)) =
m5n−m2r+m4q(1+y)−m4(b+µ)

sτ4+1

L (Q1(t)) =
m2θ−m5(n+η+µ)

sτ5+1

L (H1(t)) =
m4q(1−y)−m6(k2+µ)

sτ6+1

(30)
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Taking the Inverse Laplace Transform of equation (31) gives:

S1(t) = (−Bm1m4 −m1µ+ λ(1− v)) tτ1

Γ(τ1+1)

E1(t) = (−Bm1m4 −m2 (µ+ ρ+ r + θ)) tτ2

Γ(τ2+1)

A1(t) = m2ρ−m3 (k1 + µ) tτ3

Γ(τ3+1)

P1(t) = m5n −m2r +m4q(1 + y)−m4(b + µ) tτ4

Γ(τ4+1)

Q1(t) = m2θ −m5 (n + η + µ) tτ5

Γ(τ5+1)

Q1(t) = m4q(1− y)−m6 (k2 + µ) tτ6

Γ(τ6+1)

(31)

Also taking I = 2, I = 1 I equation (32) gives

L (S2(t)) =
1
Sτ1

(
µ (−Bm1m4−m1µ+λ(1−v))

Sτ1+1
+ 1−v

S
λ
)

− 1
Sτ1

(
B m5n−m2r+m4q(1+y)−m4(b+µ)(−Bm1m4−m1µ+λ(1−v))Γ(1+τ1+τ4)

Sτ1+τ4+1Γ(1+τ1)Γ(1+τ4)

)
L (E2(t)) =

1
Sτ2

(
−(µ+ρ+r+θ)(Bm1m4−m2(µ+ρ+r+θ))

Sτ2+1

)
+

1
Sτ1

(
Bm5n−m2r+m4q(1+y)−m4(b+µ)(−Bm1m4−m1µ+λ(1−v))Γ(1+τ1+τ4)

Sτ1+τ4+1Γ(1+τ1)Γ(1+τ4)

)
L (A2(t)) =

1
Sτ3

(
−(k1+µ)(−m3(k1+µ)+m2ρ)

Sτ3+1

)
+ 1
Sτ3

(
ρ(Bm1m4−m2(µ+ρ+r+θ))

Sτ2+1

)
(32)

L (P2(t)) =
1
Sτ4

(
−(b+q(1+y)+µ)m5n−m2r+m4q(1+y)−m4(b+µ)

Sτ4+1

)
+

1
Sτ4

(
n(m2θ−m5(n+η+µ))

Sτ5+1
+ r(Bm1m4−m2(µ+ρ+r+θ))

Sτ2+1

)
L (Q2(t)) =

1
Sτ5

(
−(n+η+µ)m2θ−m5(n+η+µ)

Sτ5+1
+ θ(Bm1m4−m2(µ+ρ+r+θ))

Sτ2+1

)
L (H2(t)) =

1
Sτ6

(
q(1+y)(m5n−m2r+m4q(1+y)−m4(b+µ))

Sτ4+1

)
+ 1
Sτ6

(
−(k2+µ)(m4q(1+y)−m6(k2+µ))

Sτ6+1

)
(33)

Applying the inverse Laplace Transform to equation (34) results to:

S2(t) = t
τ1

[
tτ1µ(Bm1m4+m1µ+λ(1−v))

Γ(2τ1+1)
+ (λ−λv)Γ(1+τ4)Γ(2τ1+τ4+1)
Γ(2τ1+τ4+1)Γ(1+τ4)Γ(1+τ1)

]
+

[
−Btτ1+τ4 (bm4−m5n+m4q−m2r+m4qy+m4δ2+m4µ)(Bm1m4+m1µ+λ(−1+v))Γ(2τ1+τ4+1)

Γ(2τ1+τ4+1)Γ(1+τ4)Γ(1+τ1)

]
E2(t) =

[
t2τ2 (r+θ+µ+ρ)(−Bm1m4−m2(r+θ+µ+ρ))

Γ(2τ2+1)

]
+

[
Btτ1+τ4 (bm4−m5n+m4q−m2r+m4qy+m4δ2+m4µ)(Bm1m4+m1µ+λ(−1+v))Γ(τ1+τ4+1)

Γ(τ1+τ4+τ2+1)Γ(1+τ4)Γ(1+τ1)

]
A2(t) = t

τ2+τ3 ρ(−Bm1m4+m2(r+θ+µ+ρ))
Γ(τ2+τ3+1)

+ t2τ3 (k1+µ)(k1m3+m3µ−m2ρ)
Γ(2τ3+1)

P2(t) = t
τ4

(
Bm1m2rt

τ2

Γ(τ2+τ4+1)
− m2r t

τ2 (r+θ+µ+ρ)
Γ(τ2+τ4+1)

)
+ tτ4

(
tτ4(b+q+qy+µ)(bm4−m5n+m4q−m2r+m4qy+m4δ2+m4µ)

Γ(2τ4+1)

)
−tτ4

(
ntτ5 (−m2θ+m5(n+η+µ))

Γ(τ5+τ4+1)

)

Q2(t) =
−tτ2+τ5 θ(−Bm1m4−m2(r+θ+µ+ρ))

Γ(τ5+τ2+1)
+ t2τ5 (−m2θ+m5(n+η+µ))

Γ(2τ5+1)

H2(t) =
−qtτ4+τ6 (1+y)(bm4−m5n+m4q−m2r+m4qy+m4+m4µ)

Γ(τ4+τ6+1)
+ t

2τ6 (k2+µ)(k2m6−m4q(1+y)−m6µ)
Γ(2τ6+1)

(34)
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8. RESULTS AND DISCUSSION

Figures 1 to 6 present the results of numerical investigations conducted on the dynamics of a proposed fractional order

transmission model for Covid-19. These figures visually depict the behavior of different populations (Susceptible, Exposed,

Asymptomatic, Infected, Quarantine, and Hospitalized) over time (t). The study compared various fractional orders (τ) with

the traditional integer order (τ = 1).

The main finding of the study revealed that by varying the fractional order (τ) between 0 and 1, the fractional order Covid-19

model demonstrated increased flexibility in capturing the intricate dynamics of the system. This enhanced flexibility was observed

across all populations, as they exhibited an upward trend over time (t), indicating a larger number of individuals transitioning to

their respective classes (Susceptible, Exposed, Asymptomatic, Infected, Quarantine, or Hospitalized) at a rate influenced by the

recovery process.

Further analysis of the results showed that Figure 2 displayed a gradual reduction in the number of exposed individuals over

time. Figure 3 demonstrated a slower spread of the virus within the Asymptomatic population, with a gradual decline in the

infection rate. Similarly, Figure 4 indicated a slow decrease in the infection rate among the infected population, as more individuals

recovered and moved out of the infected class, contributing to overall containment. The Quarantine population, as shown in

Figure 5, initially experienced a decrease, followed by a slower decline over time (t), suggesting a gradual release of individuals

from quarantine due to increased control measures. Likewise, the Hospitalized population exhibited a gradual decrease in the

infection rate as individuals moved into the Hospitalized class through recovery.

In summary, our research highlights the importance of incorporating fractional order derivatives to assess the impact of

control measures in eradicating Covid-19 using a novel model. This inclusion provides greater flexibility and a more accurate

representation of the complex dynamics observed in real-world scenarios. Our findings consistently support the notion that
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fractional orders contribute to an improved understanding and modeling of the Covid-19 pandemic, enhancing our ability to

predict and manage its impact more effectively.

Figure 7 Graph of the population of the model when vaccination is implemented at a rate of 0.6.

Figure 8 Graph of Asymptomatic,Symptomatic and Hospitalize population Figure Graph of Asymptomatic, when y=0.9

Figure 9 Symptomatic and Hospitalize population when y=0.

9. Conclusions

In conclusion, our study underscores the importance of a well-executed enlightenment program in controlling the transmission

of COVID-19. The findings of the model support the notion that an effective awareness campaign, coupled with appropriate

implementation measures, can significantly contribute to mitigating the impact of the disease.
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