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The current research develops a derivative-free family without memory methods. The proposed method consisting of two

steps and one parameter for solving nonlinear equations is brought forward. The basin of attraction of the proposed methods

has investigated using different weight functions. Numerical examples are experimented with to check the performance of

the proposed schemes. Furthermore, the theoretical order of convergence is confirmed on the experiment work. Copyright
c⃝ 2023 Shahid Beheshti University.

Keywords: Iterative method; Convergence order; Basin of attraction; Nonlinear equation.

1. Introduction

Most of the Mathematical problems that arise in science and engineering are very hard and sometime impossible to solve

exactly. Therefore, it is indispensable to calculate approximate solutions based on numerical methods. The celebrated Newton’s

method can define as xk+1 = xk − f (xk )
f ′(xk )

, is one of the oldest and the most applicable methods in the literature. This method

has locally quadratically convergence for the simple roots and per iteration requires one evaluation of the function and its first

derivative. About two centuries later, in 1960, the first optimal two-point method was constructed by Ostrowski [13]

{
yk = xk − f (xk )

f ′(xk )
, k = 0, 1, 2, · · · ,

xk+1 = yk − f (yk )(yk−xk )
2f (yk )−f (xk )

.
(1)

This method can be rewritten as follows: {
yk = xk − f (xk )

f ′(xk )
, k = 0, 1, 2, · · · ,

xk+1 = yk − f (yk )
f ′(xk )

f (xk )
f (xk )−2f (yk )

.
(2)

Also, this family of two-point methods requires three function evaluations and has the order of convergence four. Therefore, this

family is of optimal order and supports the Kung-Traub conjecture [10]. The efficiency of the new method is measured by

the concept of efficiency index. Commonly, the efficiency of an iterative method is measured by the efficiency index defined by

Ostrowski in [13] as d
√
p, where p is the order of convergence and d is the number of functional evaluations per step. Accordingly,

the efficiency index of Newton’s method and Ostrowski’s method are respectively:
√
2 ≈ 1.41 and 3

√
4 ≈ 1.58. But these methods

have a major weakness, one has to calculate the derivative of f (x) at each approximation. In this work, we will turn Ostrowski’s

method into a Steffensen-type. In this way, the problem of computing the derivative of the function is solved.We consider

approximating the derivative function by the divided difference method. The construction of the proposed class has based on the

weight function approach.We have described the structure of the modified Ostrowski’s methods two-step without memory in

Section two. The numerical study presented in Section 3 confirms the theoretical results. In Section 4, the dynamical properties

of the proposed methods along with their illustrative basins of attraction and weight functions have been displayed with detailed

analyses and comments. Finally, we give the concluding remarks.
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2. Construction of Without Memory Method

By looking at relation (2), it can be seen that this method uses the derivative of the function in the first and second steps and

this reveals that the two-point family of methods (2) reaches at least fourth order of convergence by using only three functional

evaluations (i.e., f (xn), f (yn), and f
′(xn)) per full iteration. To derive new methods, we approximate f

′(xn) given in one-step (2)

as follows:

wk = xk + βf (xk), f
′(xk) ≈ f [wk , xk ] =

f (wk)− f (xk)
wk − xk

. (3)

In following, the derivative f ′(xn) in the second step will be approximated by

f [yk , wk ]

h(tk)
(4)

where h(tk) is a differentiable function that depends real variable tk =
f (yk)

f (xk)
. Therefore, we start from the scheme (2), the

approximations (3), (4) and state the following two-point method{
wk = xk + βf (xk), yk = xk − f (xk )

f [wk ,xk ]
, k = 0, 1, 2, · · · ,

xk+1 = yk −H(tk) f (xk )
f (xk )−2f (yk )

f (yk )
f [yk ,wk ]

.
(5)

Theorem (1) illustrates that under what conditions on weight function, convergence order of two-step family (5) will arrive

at the optimal level four.

Theorem 1 Let H, f : D ⊂ R→ R have a single root x∗ ∈ D, for an open interval D. If the initial point x0 is sufficiently
close to x∗, then the sequence xm generated by any method of the family (5) converges to x

∗. If H is any function with

H(0) = 1, H′(0) = −1, H′′(0) <∞ and β ̸= 0 then the methods defined by (5) have convergence order at least 4.

Proof. By using Taylor’s expansion of f (x) about x∗ and taking into account that f (x∗) = 0, ek = xk − x∗, also ck , for k ≥ 2,
are defined by ck =

f (k)(x∗)
k!f ′(x∗) . We obtain

f (xk) = f
′(x∗)(ek + c2e

2
k + c3e

3
k + c4e

4
k +O(e

5
k )). (6)

Then, computing ek,w = wk − x∗, we attain wk = xk + βf (xk)

ek,w = ek + ekβf
′(x∗)(1 + ek(c2 + ek(c3 + ekc4))) +O(e

5
k ), (7)

and

f (wk) =f
′(x∗)(ek + ekβf

′(x∗)(1 + ek(c2 + ek(c3 + ekc4))) + c2(ek + ekβf
′(x∗)

(1 + ek(c2 + ek(c3 + ekc4))))
2 + c3(ek + ekβf

′(x∗)(1 + ek(c2 + ek

(c3 + ekc4))))
3 + c4(ek + ekβf

′(x∗)(1 + ek(c2 + ek(c3 + ekc4))))
4).

(8)

Considering f [x, y ] = f (x)−f (y)
x−y is Newton’s first order divided difference. we get

f [xk , wk ] =− 1/(ekβf ′(x∗)(1 + ek(c2 + ek(c3 + ekc4))))−1(ek f ′(x∗)(1 + ek(c2 + ek(c3
+ ekc4)))− f ′(x∗)(ek + ekβf ′(x∗)(1 + ek(c2 + ek(c3 + ekc4))) + c2(ek + ekβ

f ′(x∗)(1 + ek(c2 + ek(c3 + ekc4))))
2 + c3(ek + ekβf

′(x∗)(1 + ek(c2 + ek(c3

+ ekc4))))
3 + c4(ek + ekβf

′(x∗)(1 + ek(c2 + ek(c3 + ekc4))))
4)). (9)

So that

yk =x
∗ + (1 + βf ′(x∗))e2k + (−(2 + βf ′(x∗)(2 + βf ′(x∗))c22 ) + (1 + βf ′(x∗))(2 + βf ′(x∗))

c3e
3
k + ((4 + βf

′(x∗)(5 + βf ′(x∗)(3 + βf ′(x∗))))c32 − (7 + βf ′(x∗)(10 + βf ′(x∗)

(7 + 2βf ′(x∗))))c2c3 + (1 + βf
′(x∗)(3 + βf ′(x∗)(3 + βf ′(x∗)))c4)e

4
k +O(e

5
k ). (10)
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The expansion of f (yk) about x
∗ is given as

f (yk) =f
′(x∗)(1 + βf ′(x∗))c2e

2
k + f

′(x∗)(−(2 + βf ′(x∗)(2 + βf ′(x∗))c22 + (1 + βf ′(x∗))

(2 + βf ′(x∗))c3e
3
k + f

′(x∗)((5 + βf ′(x∗)(7 + βf ′(x∗)(4 + βf ′(x∗))))c32−
(7 + βf ′(x∗)(10 + βf ′(x∗)(7 + 2βf ′(x∗))))c2c3 + (1 + βf

′(x∗)

(3 + βf ′(x∗)(3 + βf ′(x∗)))c4)e
4
k +O(e

5
k ). (11)

From (6) and (11), we now have

f (xk)

f (xk)− 2f (yk)
= 1 + 2(1 + f ′(x∗))c2ek + 2((−1 + βf ′(x∗)(1 + f ′(x∗)))c22 (1 + f ′(x∗))

(2 + f ′(x∗))c3)e
2
k + 2(f

′(x∗)(−1 + βf ′(x∗))(2 + βf ′(x∗))c32 + 2(−1 + βf ′(x∗))

(1 + βf ′(x∗))(3 + f ′(x∗))c2c3 + (1 + f
′(x∗))(3 + f ′(x∗)(3 + f ′(x∗)))c4)e

3
k +O(e

4
k ). (12)

Using (8) and (11), we obtain

f (yk)

f [wk , yk ]
=(1 + f ′(x∗))c2e

2
k + (−(3 + 2βf ′(x∗)(2 + f ′(x∗)))c22 (1 + f ′(x∗))(2 + f ′(x∗))

c3)e
3
k + ((7 + f

′(x∗)(11 + βf ′(x∗)(8 + βf ′(x∗))))c32 − 2(5 + βf ′(x∗)

(9 + βf ′(x∗)(7 + 2f ′(x∗))))c2c3 + (1 + f
′(x∗))(3 + f ′(x∗)(3 + f ′(x∗)))c4)e

4
k +O(e

5
k ). (13)

Using the Taylor expansion H(tk) we have

H(tk) = H(
f (yk)

f (xk)
) = H(0) +H′(0) ∗ ( f (yk)

f (xk)
) +H′′(0) ∗

( f (yk )
f (xk )
)2

2
. (14)

Now with using relations h0 = H(0), h1 = H′(0), h2 = H′′(0), and from (14), we get,

H(tk) =h0 + h1(1 + βf
′(x∗))c2ek + (

1

2
(h2((1 + βf ′(x∗))2 − 2h1(3 + βf ′(x∗)(3 + βf ′(x∗))))

c22 + h1(1 + βf
′(x∗))(2 + βf ′(x∗))c3e

2
k + ((−h2(1 + βf ′(x∗)(3 + βf ′(x∗)(3 + βf ′(x∗)))

+ h1(2 + βf ′(x∗))(4 + βf ′(x∗)(3 + βf ′(x∗))))c32 + h2(1 + βf
′(x∗))2(2 + βf ′(x∗))

− 2h1(5 + βf ′(x∗)(7 + βf ′(x∗)(4 + βf ′(x∗))))c2c3 + h1(1 + βf ′(x∗))(3 + βf ′(x∗)

(3 + βf ′(x∗)))c4)e
3
k +O(e

4
k ). (15)

Thus, substituting (10), (12), (13) and (15) in (5), we get

xk+1 − x∗ = yk − x∗ −H(tk)
f (xk)

f (xk)− 2f (yk)
f (yk)

f [yk , wk ]

= −(−1 + h0)(1 + βf ′(x∗))c2e2k + ((−2 + h0− h1(1 + βf ′(x∗))2 − βf ′(x∗)

(2 + βf ′(x∗)))c22 − (−1 + h0)(1 + βf ′(x∗))(2 + βf ′(x∗))c3)e3k (βf ′(x∗))2

+ (
1

2
(8− 2h0 + 8h1− h2 + f ′(x∗)(10 + 6h0 + 14h1− 10h2)(6 + 8h1− 3h2)

(−βf ′(x∗))3(−2 + 2h0− 2h1 + h2)c32 − (7− h0 + 4h1 + 2βf ′(x∗)

(5 + h0 + 5h1) + (βf ′(x∗))2(7 + 2h0 + 8h1) + 2(βf ′(x∗))3(1 + h1)c2c3

− (−1 + h0)(1 + βf ′(x∗))(3 + βf ′(x∗)(3 + βf ′(x∗))))c4)e4k +O(e5k ). (16)

By putting h0 = 1, h1 = −1, the final error expression is given by:

ek+1 =
−1
2
((1 + βf ′(x∗))2c2)((−2 + h2 + f ′(x∗)β(2 + h2)c22 + 2c3))e4k +O(e5k ). (17)

Hence, the fourth-order convergence is established. �
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Some of the functions that Satisfy to Theorem 1 are as follows:{
H1(t) = 1− t, H2(t) = 1

1+t
, H3(t) = (1− t

2
)2, H4(t) = e

−t , H5(t) =
1+2t
1+3t
,

H6(t) = cos(t)− sin(t), H7(t) = Arccos(t), H8(t) = t2+1
1+t
, H9(t) = e

t − 2t.
(18)

Using iterative methods, many efficient multipoint iterative methods have been proposed for solving nonlinear equations, see

[5, 7, 16, 17, 20].

3. Numerical results

The principal purpose of numerical examples is to verify the validity of the theoretical developments through a variety of test

examples using high accuracy computations by use of Mathematica program. All computations were done by using Mathematica

11.

We have used many ”SetAccuracy, MantissaExponent, F indRoot,

andWorkingP recision” commands in the computer programs of this article.We explain each of the following:

1. When SetAccuracy is used to increase the accuracy of a number, the number is padded with zeros. The zeros are taken

to be in base 2. In base 10, the additional digits are usually not zeros.SetAccuracy returns an arbitrary-precision number

even if the number of significant digits obtained will be less than MachinePrecision. When expr contains machine-precision

numbers,SetAccuracy [expr, a] can give results that differ from one computer system to another.SetAccuracy will first

expose any hidden extra digits in the internal binary representation of a number, and, only after these are exhausted, add

trailing zeros.

2. MantissaExponent[x ] gives a list containing the mantissa and exponent of a number x .MantissaExponent[x, b] gives

the base-b mantissa and exponent of x .

3. F indRoot[f , {x, x0}] searches for a numerical root of f , starting from the point x = x0. F indRoot[lhs == rhs, {x, x0}]
searches for a numerical solution to the equation lhs == rhs. F indRoot[{f1, f2, · · · }, {{x, x0}, {y, y0}, · · · }] searches for
a simultaneous numerical root of all the fi .

4. WorkingP recision is an option for various numerical operations that specifies how many digits of precision should be

maintained in internal computations [6].

In tables one through five, the abbreviations Div, TNE and Iter are used as follows:

TNE: Total Number of Evaluations required for a method to do the specified iterations.

Div : The corresponding iterative method is divergent for the initial guess.

Iter : Number of repetitions

The errors |xk − α| of approximations to the corresponding zeros of test functions fi(x), i = 1, 2 · · · , 10.
The computational order of convergence rc [14] computed by the expressions (if they are stable)

rc =
log |f (xn)/f (xn−1)|
log |f (xn−1)/f (xn−2)|

, (19)

We shall check the effectiveness of the new without memory methods.We employ the presented methods (5) denoted by

TM4, (for different values of β) to solve some nonlinear equations. We compared our methods and some known methods as

follows: Jarratt’s method (JM) [9]: {
wk =

f (xk )
f ′(xk )

, yk = xk − 1
2
f (xk )
f ′(xk )

, k = 0, 1, 2, · · · ,
xk+1 = yk +

f (xk )

f ′(xk )−3f ′(xk− 23wk )
.

(20)

Kung-Traub’method(KTM) [10]: {
yk = xk − f (xk )

f ′(xk )
, k = 0, 1, 2, · · · ,

xk+1 = yk − f (xk )f (yk )

(f (xk )−f (yk ))2
f (xk )
f ′(xk )

,
(21)

Maheshwari’s method (MM) [11]: {
yk = xk − f (xk )

f ′(xk )
, k = 0, 1, 2, · · · ,

xk+1 = xk +
1

f ′(xk )
( f (xk )

2

f (yk )−f (xk )
− f (yk )

2

f (xk )
).

(22)

Ostrwoski’s method (OM) (1) [13]. And , Traub’s method (TM) [18]:{
λk =

−1
f [xk ,xk−1]

, k = 1, 2, . . . ,

wk = xk + λk f (xk), xk+1 = xk − f (xk )
f [xk ,wk ]

, k = 0, 1, . . . .
(23)
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The numerical values in Tables 1-3 validate that the presented scheme TM4 performs better, not only for the absolute error

in the root and the absolute value of the function as compared to without memory method. In Tables 1-3 we show the numerical

results obtained by applying the different methods with memory for approximating the solution of fi(x) = 0, i = 1, 2, 3. It

should note that the condition for the convergence of repetitive methods is to select the appropriate initial conjecture root of

the nonlinear equation.One can see more about this in Reference [15].

f1(x) = x
5 + x4 + 4x2 − 15, x∗ = 1.34, x0 = 1.1, [19]

f2(x) = cos(x
2 − 1)− x log(x2 − π) + 1, x∗ =

√
1 + π, x0 = 2, [8]

f3(x) =
√
x4 + 8 sin( π

x2+2
) + x3

x4+1
−
√
6 + 8

17
, x∗ = −2, x0 = −2.3 [15]

Table 1. Numerical results.

functions OM [13] JM [9] KTM [10] MM [11]

f1 |xn+1 − xn| 9.19935× 10−171 3.75861× 10−43 5.39338× 10−31 1.08801× 10−18
|f (xn+1)| 1.47556× 10−43 4.04445× 10−169 4.4005× 10−120 2.1393× 10−70
Iter 3 4 4 4

rc 4.00 4.00 4.00 3.99

f2 |xn+1 − xn| 1.06006× 10−81 4.00433× 10−79 1.90086× 10−69 6.23543× 10−62
|f (xn+1)| 5.11850× 10−323 1.26383× 10−312 1.84157× 10−273 5.15151× 10−243
Iter 3 4 4 4

rc 4.00 4.00 4.00 4.00

f3 |xn+1 − xn| 7.74534× 10−70 1.08145× 10−52 2.21403× 10−36 2.771× 10−29
|f (xn+1)| 2.22649× 10−279 2.03962× 10−210 2.30758× 10−144 1.62563× 10−115
Iter 3 4 4 4

rc 4.00 4.00 4.00 4.00

Table 2. Numerical results.

functions TM4(5),H1(t) TM4(5),H2(t) TM4(5),H3(t) TM4(5),H4(t) TM4(5),H5(t)

β0 β0 = 0.1 β0 = 0.01 β0 = −0.01 β0 = 0.01 β0 = 0.01

f1 |xn+1 − xn| 1.08041× 10−10 1.72662× 10−15 2.51132× 10−13 7.74905× 10−8 1.34597× 10−13
|f (xn+1)| 4.37754× 10−37 1.14922× 10−57 4.55033× 10−50 1.86151× 10−27 1.10928× 10−49
Iter 3 3 3 3 3

rc 3.99 3.99 3.99 4.00 4.00

β0 β0 = 1 β0 = −0.1 β0 = 1 β0 = β0 = 1

f2 |xn+1 − xn| 6.22292× 10−90 3.79045× 10−14 5.325× 10−10 2.99541× 10−7 7.07869× 10−6
|f (xn+1)| 9.08601× 10−360 1.56633× 10−51 4.50474× 10−33 5.29199× 10−22 4.08921× 10−16
Iter 3 3 3 3 3

rc 3.99 3.99 3.99 3.99 4.02

β0 β0 = 0.1 β0 = 0.01 β0 = 1 β0 = 1 β0 = 0.1

f3 |xn+1 − xn| 1.30669× 10−13 1.93275× 10−10 1.45948× 10−22 1.28419× 10−22 12.55487× 10−9
|f (xn+1)| 3.18881× 10−54 1.13357× 10−40 2.48677× 10−90 1.33337× 10−90 8.76226× 10−36
Iter 3 3 3 3 3

rc 3.99 4.00 4.00 4.00 4.00

In the continuation of this work, in the next section, the dynamic behavior of the proposed method for different values of β

and the choice of weighted functions in Equation (18) will be examined.

4. Attraction basins of fourth-order derivative-free methods

In this section, to analyze the dynamic behavior of the proposed method, selecting the appropriate value of the parameter β

and also selecting the weight function with the maximum absorption region of three polynomial functions have been used. From

the dynamical point of view, we take a 500× 500 grid of the square D = [−5, 5]× [−5, 5] ∈ C. Several iterative root-nding
methods have compared from a dynamical point of view by Babajee et al. [1], Chicharro et al. [2], Chun et al. [3], Cordero et al.

[4], Geum et al. [8], Moccari-Lotfi [12].We have studied the dynamic behavior of the proposed methods by using the following

two functions:

f (z) = z2 − 1, f (z) = z3 − 1 (24)

Comput. Math. Comput. Model. Appl. 2023, Vol. 2, Iss. 1, pp. 1–10 Copyright c⃝ 2023 Shahid Beheshti University. 5
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Table 3. Numerical results.

functions TM4(5),H6(t) TM4(5),H7(t) TM4(5),H8(t) TM4(5),H9(t)

β0 β0 = 0.01 β0 = 0.1 β0 = 0.01 β0 = 0.01

f1 |xn+1 − xn| 1.91966× 10−7 0.00091× 100 1.24753× 10−6 9.33817× 10−9
|f (xn+1)| 8.51553× 10−26 0.00009× 100 4.79146× 10−11 3.92571× 10−31
Iter 3 3 3 3

rc 3.98 2.01 2.00 4.00

β0 β0 = 1 β0 = −1 β0 = −1 β0 = −0.1
f2 |xn+1 − xn| 2.92092× 10−21 0.00976× 100 0.00976× 100 6.66773× 10−15

|f (xn+1)| 1.95807× 10−78 0.00957× 100 0.00957× 100 8.49775× 10−55
Iter 3 3 3 3

rc 4.00 3.42 3.42 3.99

β0 β0 = 0.01 β0 = −3 β0 = −3 β0 = 0.1

f3 |xn+1 − xn| 2.25856× 10−11 0.15816× 100 0.15816× 100 1.61482× 10−13
|f (xn+1)| 1.31937× 10−44 0.01699× 100 0.01699× 100 1.69108× 10−53
Iter 3 3 3 3

rc 3.99 3.89 3.89 4.00

Figure 1 shows that the proposed method has the minimum the basins of attraction in β = 1 ((1a)) and the maximum the

basins of attraction in β = 0.01 ((1c)).

(a) H1(t) = 1− t, β = 1 (b) H1(t) = 1− t, β = 0.1 (c) H1(t) = 1− t, β = 0.01

Figure 1. Method TM4 (5) for finding the roots of the polynomial f (z) = z3 − 1

Figure 2 displays the basins of attraction of the proposed method by considering the weight function H2(t) with three values

of β in three separate forms. From this figure, it results that the maximum area of absorption corresponds to β = 0.01 and

also, the smallest-corresponds to β = 1.
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(a) H2(t) =
1
1+t
, β = 1 (b) H2(t) =

1
1+t
, β = 0.1 (c) H2(t) =

1
1+t
, β = 0.01

Figure 2. Method TM4 (5) for finding the roots of the polynomial f (z) = z3 − 1

Figure 3 shows the the basins of attraction of the proposed method by considering the weight function H3(t) with two values

of β in two separate forms. From this figure it follows that the maximum the basins of attraction corresponds to β = 0.01 and

also the minimum corresponds to β = 0.1.

(a) H3(t) = (1− t
2
)2, β = 0.1 (b) H3(t) = (1− t

2
)2, β = 0.01

Figure 3. Method TM4 (5) for finding the roots of the polynomial f (z) = z3 − 1

Figure 4 shows the polynomiographs of the proposed methods (5) for the cubic polynomial p1(z) = z
3 − 1 with weight function

H7(t) and β = 0.1, β = 0.01. Basins of attraction for TM4 (5) is illustrated in Figure 5.We have used the weight function H8(t)

(a) H7(t) = arccos(t), β = 0.1 (b) H7(t) = arccos(t), β = 0.01

Figure 4. Method TM4 (5) for finding the roots of the polynomial f (z) = z3 − 1

and the parameter β with values 0.1 and 0.01.
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(a) β = 0.01, H8(t) =
t2+1
1+t

(b) β = 0.001, H8(t) =
t2+1
1+t

Figure 5. Method TM4 (5) for finding the roots of the polynomial f (z) = z3 − 1

Figure 6 presents the polynomiographs of the suggested methods for the cubic polynomial f (z) = z3 − 1 with weight function
H5(t) and β = 0.01.

Figure 6. Method TM4 (5) for finding the roots of the polynomial f (z) = z3 − 1, with β = 0.01, H5(t) = 1+2t
1+3t

Figure 7 manifests the basins of attraction of the proposed method using three weight functions H4(t), H9(t), and H6(t) in

Figures 7a, 7b, and 7c, respectively. Here the value of the free parameter β = 0.01 is recognized. The highest absorption domain

among these three functions are related to function H6(t).

(a) H4(t), β = 0.01 (b) H9(t), β = 0.01 (c) H6(t), β = 0.01

Figure 7. Method TM4 (5) for finding the roots of the polynomial f (z) = z3 − 1

Figure 8 compares the basins of attraction of the proposed method using the weight function H1(t) and Ostrowski’s

method. Here the value of the free parameter β = 0.001 is considered. The absorption range of both-methods is almost the
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same. Besides, the proposed method does not use a function derivative to find the root of nonlinear equations.

(a) β = 0.001, H1(t) = 1− t (b) Ostrowski ′s Method

Figure 8. Comparison basins of attraction of proposed methods TM4 (5) and

Ostrowski’s method for finding the roots of the polynomial f (z) = z3 − 1

(a) β = 0.01, H1(t), f (z) = z
2 − 1 (b) H1(t), f (z) = z

3 − 1, β = 0.01

Figure 9. Comparison basins of attraction of proposed methods TM4 (5)

5. Conclusions

In this paper, we have used the idea of the weight function. Then, we have turned Ostrowski’s method into an optimal-

method. Numerical tests intend to verify the better performance of the proposed method over the others. According to the

examples studied in Figures 1 to 9, we conclude that the weight function H1(t) and parameter β = 0.001 have the highest

stability region and are competitive on Ostrowskis method.
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8. Y. H. Geum, Y. I. Kim, A. A. Magreñán. A biparametric extension of Kings fourth-order methods and their dynamics. Applied

Mathematics and Computation, 282: 254–275, 2016.

9. P. Jarratt. Some Fourth order multipoint iterative methods for solving equations. Mathematics of Computation, 20: 434–437, 1966.

10. H. T. Kung, J. F. Traub. Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Mach, 21 (4): 643–651, 1974.

11. A. K. Maheshwari. A fourth-order iterative method for solving nonlinear equations. Applied Mathematics and Computation, 211:

383–391, 2009.

12. M. Moccari, T. Lot. On a two-step optimal Steffensen-type method: Relaxed local and semi-local convergence analysis and dynamical

stability. Journal of Mathematical Analysis and Applications, 468 (1): 240–269, 2018.

13. A. M. Ostrowski. Solution of equations and systems of equations, Academic press, New York, 1960.
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