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physical singular second-order boundary
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In this paper, two numerical approaches based on the Newton iteration method with spectral algorithms are introduced to

solve the Thomas-Fermi equation. That Thomas-Fermi equation is a nonlinear singular ordinary differential equation (ODE)

with a boundary condition in infinite. In these schemes, the Newton method is combined with a spectral method where in

one of those, by the Newton method we convert nonlinear ODE to a sequence of linear ODE and then, solve them using

the spectral method. In another one, by the spectral method, the nonlinear ODE is converted to a system of nonlinear

algebraic equations, then, this system is solved by the Newton method. In both approaches, the spectral method is based

on the fractional order of rational Gegenbauer functions. Finally, the obtained results of the two introduced schemes are

compared to each other in accuracy, runtime, and iteration number. Numerical experiments are presented showing that

our methods are as accurate as the best results obtained until now. Copyright c⃝ 2022 Shahid Beheshti University.
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1. Introduction

Nonlinear problems arise in various fields of research such as biology, cognitive sciences, engineering, finance, etc. One of

the branches of nonlinear problems is nonlinear ODEs which have unbounded domains. Since these problems are significant,

many researchers developed different numerical schemes to solve them. There are various numerical algorithms to compute the

solution of nonlinear problems over the semi-infinite domains such as the Adomian decomposition method [1–4], finite difference

and finite element methods [5–7], Hermite collocation [8], meshless methods [9–11], etc. In this work, two different approaches

based on the combination of spectral methods and Newton family algorithms are introduced. As the first one, we can refer to

the pre-Newton. In the pre-Newton approach, a linearization method is done directly on the nonlinear ODE; then, nonlinear

ODE is converted to a sequence of linear ODE which can be solved by different numerical algorithms such as spectral methods.

The second approach is the post-Newton. In the post-Newton approach, by using a numerical method the nonlinear ODE is

converted to a system of nonlinear algebraic equations, and then, this system is solved using various Newton-type algorithms. To

show the efficiency of these approaches and compare them to each other, we consider a nonlinear ODE called the Thomas-Fermi

equation which arises in theoretical physics as a test problem. This model has two significant roles in mathematical physics for

two reasons: Thomas-Fermi equation was enhanced to model the effective nuclear charge in heavy atoms, and was investigated

to analyze the potentials and charge densities of atoms having numerous electrons [12].
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Table 1. Different forms of Thomas-Fermi equation

Equation Boundary conditions Unknown coordinate

d2y
dx2
− 1√

x
y
3
2 (x) = 0 y(0) = 1, y(∞) = 0 y x ∈ [0,∞]

z{y d2y
dz2
+ dy
dz
} − y dy

dz
− 2z2y 3 = 0 y(0) = 1, y(∞) = 0 √

y z =
√
x

z d
2y
dz2
− dy
dz
− 4z2y

3
2 = 0 y(0) = 1, y(∞) = 0 y z =

√
x

In this paper, pre-Newton and post-Newton approaches based on the fractional order of rational Gegenbauer (FRG) functions

are used to solve the Thomas-Fermi equation in the semi-infinite interval. The main aim of this paper is to present a kind of

collocation method based on FRG for the solving Thomas-Fermi equation which can obtain the most accurate results which are

reported until now. In this paper, we are going to compute y ′(0). The obtained value for y ′(0) is as follows:

−1.588071022611375312718684509423950109452746621674825616765677.

This value is obtained in [37] using 600 basis functions. But in this paper, we will obtain this value by using only 200 basis

functions The main advantage of the presented method is highly convergence rate of it. On the other hand, it has a good time

efficiency. The main idea behind this paper is to use the linearization method to overcome the non-linearity of the Thomas-Fermi

equation and we have used fractional order of rational Gegenbauer functions for the first time for solving the Thomas-Fermi

equation. Moreover, the main advantage of our algorithm is the reduction of the essential basis function which is needed for

obtaining the best possible accuracy. The organization of the paper is expressed as follows: Thomas-Fermi equation is introduced

in Section 2, and the Gegenbauer polynomials and FRG functions are introduced in Section 3. Section 4 contains the Newton-

Kantorovich method and the application of spectral methods. Results and discussion of the proposed methods are shown in

Section 4. Finally, a conclusion is provided in Section 5.

2. Thomas-Fermi equation

The Thomas-Fermi theorem illustrates how the energy of an electronic system, E, and the electronic density, ρ, are connected

to each other by the following formula [14]:

E[ρ] =
9

10B

∫
ρ(r)dτ +

1

2

∫
ρ(r)ρ(r ′)

|r − r ′| dτ
′dτ +

∫
ρ(r)ν(r)dτ, (1)

where ν(r) is the external potential and B = 3(3π)−
2
3 . In order to obtain the density the energy functional should be minimized

with respect to ρ and subject to the normalization restriction
∫
ρ(r)dτ = N where N is the number of electrons

3

2B
ρ(r)

3
2 +

∫
ρ(r ′)

|r − r ′|dτ
′ + ν(r) = µ, (2)

where µ is the Lagrange multiplier related to the normalization restriction [13, 14]. By using Poisson’s equation to remove the

density and a change of variables Thomas-Fermi equation is obtained as below:

d2y

dx2
=
1√
x
y
3
2 (x), (3)

with the following boundary conditions:

y(0) = 1, lim
x→∞
y(x) = 0. (4)

This equation describes the charge density in atoms of high atomic number and appears in the problem of determining the effect

of nuclear charge in heavy atoms [14–16].

As the solution of the Thomas-Fermi equation is effective in theoretical physics, many scientists have studied this model.

Moreover, this equation has three different forms which can be effective on the rate of convergence of the using numerical

algorithm [37]. These three forms of the Thomas-Fermi equation are listed in Table 1.

One special parameter in the Thomas-Fermi equation is the first derivative of the unknown function at the region y ′(0). This

importance is because of some reasons, as the first one, we can refer to the expansion of y about the region, the expansion of

y about the region is as follows [17]:

y(x) = 1 + λx +
4

3
x
3
2 +
2λ

5
x
5
2 +
1

3
x3 +

3λ2

70
x
7
2 + . . . , (5)
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Table 2. A brief bibliography on Thomas-Fermi equation

Years Description

1930–1970 In these years, scientists studied the singularity and convergence of the Thomas-Fermi equation, found an

analytical solution [17], and investigate the asymptotic behavior of y(x) [19].

1970–2000 Researchers found an alternate analytical solution for the Thomas-Fermi equation using perturbative

procedure [18], solved the Thomas-Fermi equation by standard decomposition method [1], Adomian

decomposition method and Padé approximation [2, 4].

2000-2010 In this decade, scientists proposed various approaches for approximating the solution of the Thomas-

Fermi equation such as a combination of a semi-inverse scheme and the Ritz method [20], piecewise

quasilinearization technique [21], an iterative approach and the sweep method [22], computing the potential

slope at the origin by exploiting integral properties of the Thomas-Fermi equation [23], rational Chebyshev

collocation method [24].

2010–2015 Scientists used semi-analytical and numerical approaches to solve the Thomas-Fermi equation with

high accuracy. These techniques are improved Adomian decomposition method [25], optimal parametric

iteration method [26], combination of three schemes based on Taylor series, Padé approximates and

conformal mappings [27], the Hankel-Padé method [28], an adaptive finite element method based on

moving mesh [12], Homotopy analysis method and Padé approximates [29], Newton-Kantorovich iteration

and collocation approach based on rational Chebyshev functions [30], Sinc-collocation method [14],

Rational second-kind Chebyshev pseudospectral technique [31], collocation method on Hermite polynomials

[8]

2015–2018 Recently, researchers proposed fractional order of rational orthogonal [32,33] and non-orthogonal functions

[34, 35] for approximating Thomas-Fermi equation. In 2018, Sabir et al suggest an artificial neural

network [36] to solve that. Moreover, some other researchers study coordinate transformations [37] for

approximating the Thomas-Fermi equation and found a highly accurate solution to 60 decimal places for

y ′(0)

where λ = y ′(0) < 0. On the other hand, y ′(0) can be used to obtain the energy of a neutral atom by the following formula:

E =
6

7
(
4π

3
)
2
3Z

7
3 y ′(0), (6)

where Z is the nuclear charge [18].

As mentioned above Thomas-Fermi equation has special significance in theoretical physics and thanks to this importance many

researchers develop various numerical algorithms to approximate the solution of the Thomas-Fermi equation. We summarize

some previous works in the literature in Table 2.

3. Fractional order of rational Gegenbauer (FRG) functions

There are various types of orthogonal polynomials, which have different behaviors and properties. Choosing a good orthogonal

function as a basis that behaves as same as the behavior of the exact solution is a challenging problem in spectral methods

because we have no exact solution. But in some problems such as the Thomas-Fermi equation, although we have no exact

solution we have some information about the behavior of the solution.

As mentioned in Eq. (5), y(x) can be expanded by a power series of x
1
2 [33]. So if we choose fractional functions as a basis it

can be fitted to the Baker expansion. Moreover, the Thomas-Fermi equation is defined in the semi-infinite domain. One choice

for the semi-infinite domains is rational functions. Therefore, we select the fractional order of rational Gegenbauer functions as

a basis. In this section, we introduce Gegenbauer polynomials and FRG functions, then we explain how to use the FRG function

for function approximating.

3.1. Gegenbauer polynomials

In this paper, we use the fractional order of the rational Gegenbauer function, where this function is obtained from Gegenbauer

polynomials. The Gegenbauer polynomial of degree n, Gan(x), and order a > − 12 is solution of following differential equation:

(1− x2)d
2y

dx2
− (2a + 1)x dy

dx
+ n(n + 2a)y = 0, (7)

where n is a positive integer.
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The standard Gegenbauer polynomial Gan(x), is defined as follows:

Gan(x) =

⌊ n2 ⌋∑
j=0

(−1)j Γ(n + a − j)
j!(n − 2j)!Γ(a) (2x)

n−2j , (8)

where Γ(.) is the Gamma function.

The Gegenbauer polynomials are orthogonal over the interval [−1, 1] with the weight function w(x) = (1− x2)a−
1
2 which means:∫ 1

−1
Gan(x)G

a
m(x)w(x)dx =

π21−2aΓ(n + 2a)

n!(n + a)(Γ(a))2
δnm, (9)

where δnm is the Kronecker delta function.

In addition, Gegenbauer polynomials can be obtained by the following recursive formula:

Ga0(x) = 1, Ga1(x) = 2ax, (10)

Gan+1(x) =
1

n + 1
[2x(n + a)Gan(x)− (n + 2a − 1)Gan−1(x)], n ≥ 1 (11)

3.2. Fractional order of rational Gegenbauer (FRG) functions

Scientists have been proposing the fractional order of rational functions such as rational Chebyshev [33], rational Jacobi [32],

rational Euler [35], etc. to solve some ODEs. A fractional order of the rational Gegenbauer (FRG) function is defined as follows:

FRGan(L,α, x) = G
a
n(
xα − L
xα + L

), (12)

in which L and α are real positive numbers. FRG functions are orthogonal functions in semi-infinite intervals same as Eq. (9)

according to the weight function w(x) = (1− ( xα−L
xα+L
))a−

1
2 2αLx

α−1

(xα+L)2
:∫ ∞

0

FRGan(L,α, x)FRG
a
m(L,α, x)w(x)dx =

π21−2aΓ(n + 2a)

n!(n + a)(Γ(a))2
δnm. (13)

For more information about fractional order functions, interested readers can see [38–41].

3.3. Approximation of functions

Definition 1 Consider Γ = {x |0 ≤ x ≤ ∞} and L2w (Γ) = {f : Γ −→ ℜ|f is measurable and ||f ||w <∞} where,

w(x) = (1− (x
α − L
xα + L

))a−
1
2
2αLxα−1

(xα + L)2
,

and

||f (x)||w =
(∫ ∞

0

f 2(x)w(x)dx

) 1
2

,

is the norm induced by the inner product of the space

⟨f (x), g(x)⟩w =
∫ ∞
0

f (x)g(x)w(x)dx.

Any function y(x) ∈ C(0,∞) can be expanded as the follows:

y(x) =

∞∑
n=0

anFRG
a
n(L,α, x), (14)

where

ai = ⟨y(x), FRGai (L,α, x)⟩ = ⟨
∞∑
n=0

anFRG
a
n(L,α, x), FRG

a
i (L,α, x)⟩, (15)

that is,

an =
n!(n + a)(Γ(a))2

π21−2aΓ(n + 2a)

∫ ∞
0

FRGan(L,α, x)y(x)w(x)dx, (16)

Now let assume

Vm = span{FRGa0(L,α, x), FRGa1(L,α, x), . . . , FRGam(L,α, x)},
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is a finite dimensional subspace, therefore Vm is a complete subspace of L
2
w (Γ) [33, 42, 43]. Let define the L

2
w (Γ)-orthogonal

projection ΠN,w : L
2
w (Γ)→ Vm, that for any function y ∈ L2w (Γ):

⟨ΠN,wy − y, v⟩ = 0, ∀v ∈ Vm. (17)

It is clear that ΠN,wy is the best approximation of y(x) in Vm and can be expanded as [44]:

ΠN,wy = ym(x) =

m∑
i=0

aiFRG
a
i (L,α, x). (18)

4. Application of the methods

In this section, two approaches based on the Newton method and spectral collocation algorithm are explained to approximate

the solution of the Thomas-Fermi equation. In one of them, we use the Newton method to linearize the Thomas-Fermi equation

and then solve the several linear ODEs by a spectral method that we call this method pre-Newton method. In the other method,

we convert the Thomas-Fermi equation to a nonlinear system of algebraic equations by using a spectral algorithm, then, solve

this nonlinear system by using the classical Newton method which we call this method post-Newton. These two schemes are

illustrated as follows.

4.1. Pre-Newton approach for Thomas-Fermi equation

Solving a system of nonlinear algebraic equations by using traditional Newton-type solvers have three major practical difficulties.

The first one is selecting the start point which yields the convergence of the iterations. The second one is computing the Jacobian

matrix of the system of equations at each iteration which has a lot of computational load on the algorithm. The last one is

inverting a Jacobian matrix at each iteration which is the most expensive step of the algorithm. In the post-Newton approaches

for solving nonlinear ODEs, we should overcome these difficulties [42]. In order to avoid these difficulties, we can apply the

Newton method directly to the nonlinear ODE. In the next part, a famous Newton-type algorithm is described which converts

nonlinear ODEs to a sequence of linear differential equations.

4.1.1. Newton–Kantorovich method

Newton–Kantorovich method is a well-known and strong approach to converting nonlinear ODEs to linear ones which was

introduced by Bellman and Kalaba [45–47]. This approach obtains the solution of a nonlinear ODE by solving a sequence of

linear differential equations [48]. In fact, approximating the solution of a nonlinear equation is more complicated than a linear

one; therefore, by using Newton–Kantorovich method, the solution of the sequence of the linear differential equations converges

to the solution of the original nonlinear ODE [45,49,50]. This method is based on approximating a nonlinear function by using

the linear part of the Taylor expansion of that function.

This fact can be extended to linearize a nonlinear ODE. In order to show how Newton–Kantorovich method works we consider

a n-th order nonlinear ODE over the interval [0, b] as follows [50]:

L(n)y(x) = f (y(x), y (1)(x), . . . , y (n−1)(x), x), (19)

with the following boundary conditions:

Bk(y(0), y
(1)(0), . . . , y (n−1)(0)) = 0 k = 1, 2, . . . , l , (20)

and

Bk(y(b), y
(1)(b), . . . , y (n−1)(b)) = 0 k = l + 1, l + 2, . . . , n, (21)

where L(n) is a linear n-th order ordinary differential operator and f and B1, B2, . . . , Bn are nonlinear functions of y(x) and

its n − 1 derivatives y (s), s = 1, 2, . . . , n − 1. If we apply Newton–Kantorovich method on Eq. (19) the (r + 1)-th iterative
approximation of y(x) is obtained by solving follow linear ODE,

L(n)yr+1(x) = f (yr (x), y
(1)
r (x), . . . , y

(n−1)
r (x), x) +

n∑
s=0

(
y
(s)
r+1(x)− y

(s)
r (x)

)
fy (s)(yr (x), y

(1)
r (x), . . . , y

(n−1)
r (x), x),

(22)

where y 0r (x) is a notation for yr (x). Also, the linearized boundary conditions are obtained as follows:

n−1∑
s=0

(
y
(s)
r+1(0)− y

(s)
r (0)

)
Bky (s)(yr (0), y

(1)
r (0), . . . , y

(n−1)
r (0), 0) = 0, k = 1, . . . , l , (23)
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and
n−1∑
s=0

(
y
(s)
r+1(b)− y

(s)
r (b)

)
Bky (s)(yr (b), y

(1)
r (b), . . . , y

(n−1)
r (v), b) = 0, k = 1, . . . , l . (24)

It is worth to mention that in the above formulas fy (s) =
∂f

∂y (s)
and Bky (s) =

∂Bk
∂y (s)

for s = 0, 1, . . . , n − 1
By implementing Newton–Kantorovich method on Eq. (3), the (i + 1)− th iteration linear ODE for approximating the solution

of Thomas-Fermi equation is as follows (i = 0, 1, 2, . . . ):

√
xy ′′i+1(x)−

3

2

(
yi(x)

) 1
2 yi+1(x) =

−1
2

(
yi(x)

) 3
2 , (25)

with the following boundary conditions:

yi+1(0) = 1, lim
x→∞
yi+1(x) = 0. (26)

An initial guess y0(x) is required for the first step of the Newton–Kantorovich method. It is proved that when the initial guess

satisfies one of the boundary conditions, the Newton–Kantorovich method will be convergent [45]. Thus, we consider y0(x)=1.

4.1.2. Collocation method in the pre-Newton method

The spectral collocation method based on FRG functions is applied to Eq. (25) at each iteration. According to the boundary

conditions in Eq. (26), we approximate yi+1(x) in (i + 1)− th iteration as:

yi+1(x) ≃ yNi+1(x) = 1 + x
N−1∑
j=0

ai+1j FRG
a
j (L,α, x). (27)

where ai+1j is the j − th unknown coefficient in (i + 1)− th iteration. Equation (27) satisfies the boundary condition y(0) = 1.
To satisfy the other boundary condition, we choose a sufficiently large number K and consider yi+1(K) = 0. The Eq. (27) is

replaced in Eq. (25); afterwards, the residual function is obtained:

Resi+1(x) =
√
xy ′′Ni+1(x)−

3

2

(
yNi (x)

) 1
2 yNi+1(x) +

1

2

(
yNi (x)

) 3
2 , (28)

The roots of FRGaN(L,α, x) are considered as the collocation points which are collocated in Eq. (28) and a system of linear

algebraic equations is established. By solving this system at each iteration, y(x) is approximated.

Resi+1(xj) = 0, j = 0, ..., N − 1. (29)

4.2. Post-Newton approach for Thomas-Fermi equation

In the post-Newton approach for solving the Thomas-Fermi equation, we use a fully spectral technique same collocation method

to solve the nonlinear equation Eq. (3) without any linearization method. In this method, by using the spectral collocation

method based on the fractional order of rational Gegenbauer functions, we convert the nonlinear Thomas-Fermi equation Eq.

(3) to a system of nonlinear algebraic equations. In this method, the unknown solution y(x) of Thomas-Fermi is approximated

by the following series:

y(x) ≃ yN(x) = 1 + x
N−1∑
j=0

ajFRG
a
j (L,α, x). (30)

Then by substitution yN(x) instead of y(x) in Eq. (3) the residual function is constructed as follows:

Res(x) =
√
xy ′′N(x)− 1√

x

(
yN(x)

) 3
2 . (31)

Now, there are N unknown coefficients ai , i = 0, 1, ..., N − 1, to find these unknowns we need N equations. By using the
collocation technique and roots of the fractional order of rational Gegenbauer function of order N, and by substitution of these

nodes in the residual function we construct N nonlinear equations as follows:

Fi = Res(xi) = 0, i = 0, 1, ..., N − 2,

to satisfy the boundary condition in infinite we set FN−1 = yN(L) = 0 for sufficient large L.

So, F : RN → RN is a nonlinear function, and therefore, finding the solution of Eq. (3) has been transformed to find the
solution of the nonlinear system of equations:

F (A) = 0, A = [a0, a1, ..., aN−1]
T ,
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(a) (b)

Figure 1. Graph of the logarithm of the absolute residual errors for different N for (a) pre-Newton and (b) post-Newton.

Now, we have transformed solving the nonlinear differential equation to finding the root of a nonlinear RN → RN function.
One of the best methods to solve a nonlinear system is the classical Newton iterative method, that by using Tylor expansion:

F (xn+1) = F (xn) + (xn − xn+1)F ′(xn), (32)

presuppose xn+1 be root of F (x), F (xn+1) = 0 :

F (xn) + (xn+1 − xn)F ′(xn) = 0, (33)

⇒ xn+1 = xn − F ′(xn)−1F (xn), (34)

F ′(x) = J(x) is the n × n Jacobian matrix and is defined as follows:

Ji j =

(
∂fi
∂xj

)
, (35)

therefore:

xn+1 = xn − J(xn)−1F (xn). (36)

In fact, in each iteration, a linear system must be solved:
xn+1 = xn + δxn

J(xn)δxn = F (xn).

(37)

In this paper, we use LU method to solve linear system J(xn)δxn = F (xn) in each iteration of Newton method. The initial guess

of the post-Newton method is the simple vector x0 = (1, 1, . . . , 1)
T .

5. Numerical results and discussion

According to Boyd’s book [42], L can be chosen by ”The experimental trial-and-error method”; so, we consider L = 3

in pre-Newton and L = 2.828 in post-Newton, also we consider α = 1
2
, a = 1

2
in the both and report the results. It is worth

mentioning that all the computations are done by Maple, in a personal computer with the following hardware configuration:

desktop 64-bit Intel Core i5 CPU, 8GB of RAM, 64-bit Operating System. In [37], Zhang and Boyd calculated an approximate

solution for y ′(0) with high accuracy; thus, the results of this study are compared with [37] and found that the obtained

results are as accurate as [37]. The logarithm of absolute residual error for the Thomas-Fermi equation in the best iteration is

represented in Fig. 1. This figure shows when the number of collocation points increases, the residual error tends to zero. The

value of y ′(0) is presented in Table 3 and compared with the obtained solution by state-of-the-art methods. Table 4 contains

the values of y(x) and y ′(x) for different values of x .

Table 3. Comparison of the obtained values of y ′(0) by some researchers

Author/Authors Year Obtained value of y ′(0)

Boyd [30] (2013) -1.5880710226113753127186845

Parand et al [32] (2017) -1.588071022611375312718684509423950109

Parand and Delkhosh (N=300) [33] (2017) -1.58807102261137531271868450942395010951

Zhang and Boyd (N=600) [37] (2018) -1.588071022611375312718684509423950109452746621674825616765677

pre-Newton (N=100) -1.58807102261137531271868450942395010945274662

post-Newton (N=200) -1.588071022611375312718684509423950109452746621674825616765677
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Table 5. Runtime for the proposed methods with the different values of N and iteration

N Iteration Runtime for pre-Newton (s) Runtime for post-Newton (s)

50

20 39.901 32.392

30 60.626 48.688

40 80.361 56.359

70

20 104.191 76.690

30 172.292 111.274

40 211.721 136.428

100

20 343.672 208.404

30 469.262 304.123

40 622.255 392.937

Figure 2. Graph of the log(||Res||22) for the post-Newton method with N = 200 at different iterations.

Table 4. Values of y(x) and y ′(x) obtained by the presented methods for the various values of x

y(x) and y ′(x) x pre-Newton (N=100 and iteration=40) post-Newton (N=200 and iteration=85)

y(x)

0.5 0.6069863833559799094944460701740221017049 0.6069863833559799094944460701740842378463

3 0.1566326732164958413398134404775366125433 0.1566326732164958413398134404779118302783

10 0.0243142929886808641901103881732913695553 0.0243142929886808641901103881763049683685

50 0.0006322547829849047267797787287302055560 0.0006322547829849047267797787427886658114

200 0.0000145018034969457646803986629623432665 0.0000145018034969457646803987687276929118

5000 0.0000000011309267063430848076021125559361 0.0000000011309267063430848263855178787850

y ′(x)

0.5 -0.4894116125745380886470058475611743123609 -0.4894116125745380886470058475573462887337

3 -0.0624571308541209762287048999941581989893 -0.0624571308541209762287048999995217973789

10 -0.0046028818712692545025435118554873081322 -0.0046028818712692545025435118515886154232

50 -0.0000324989020482588146242006692476761611 -0.0000324989020482588146242006802396097650

200 -0.0000002057532316475268926057043855114949 -0.0000002057532316475268926056858363001742

5000 -0.0000000000006753397121638834659796119395 -0.0000000000006753397121638835144503744957

One of the advantages of the post-Newton approach is its computational speed. This approach is much faster than pre-

Newton; as the iterations can be increased to 85 with an acceptable runtime. In Table 5, pre-Newton and post-Newton methods

are compared in runtime with the different number of collocation points and iterations. It is derived that post-Newton is much

faster than the other approach; therefore, we can consider a larger number of iterations for the post-Newton than pre-Newton.

The logarithm of ||Res||2 at different iterations of the post-Newton method for the Thomas-Fermi equation by using 200 points
is represented in Fig. 2.

6. Conclusion

In this paper, we introduced and compared two points of view to solve nonlinear boundary problems over the semi-infinite

interval. These two approaches are called the pre-Newton method and post-Newton method, respectively. The pre-Newton

method is based on applying Newton–Kantorovich algorithm to the nonlinear ODE and solving the obtained linear ODEs from

Newton–Kantorovich method by using the collocation algorithm. The post-Newton method is based on applying the collocation

algorithm directly to the nonlinear ODE and then solving the obtained nonlinear system of algebraic equations by the classical

iterative Newton method. The collocation algorithm which is used is based on orthogonal functions in the interval [0,∞) which
are called the fractional order of the rational Gegenbauer. Since the significance of the Thomas-Fermi equation, here, we consider
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it as a test problem. In the Thomas-Fermi equation, the value of y ′(0) has important information in physics and scientists attempt

to approximate that precisely. Therefore, we compare the approximation solution in y ′(0) with the other numerical methods

and realize that our proposed method is effective. The approximate solutions for y(x) and y ′(x) for various values of x are

represented. Additionally, the suggested methods are compared in runtime to find out which method is more efficient. According

to the results, the post-Newton approach is faster and more accurate than the pre-Newton approach. It is worth mentioning that

one of the limitations of the proposed algorithms is the ill-posedness of systems of algebraic equations. This limitation causes

we can not increase the number of collocation points. Moreover, the basis functions are too complex, and finding their roots as

the collocation points is very time-consuming.
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