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In this paper, we apply the collocation method for solving some classes of Lane-Emden type equations that are determined

in interval [0, 1] and semi-infinite domain. We use an orthogonal system of functions, namely Gegenbauer polynomials and

introduce the shifted Gegenbauer polynomials and the rational Gegenbauer functions as basis functions in the collocation

method for problems in interval [0, 1] and semi-infinite domain, respectively. We estimate that the proposed method has

super-linear convergence rate and also investigate the Gegenbauer parameter (α) to get more accurate answers for various

Lane-Emden type problems. The comparison between the proposed method and other numerical results shows that the

method is efficient and applicable. Copyright c⃝ 2022 Shahid Beheshti University.
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1. Introduction

In this section, we will first have a general introduction about the spectral methods that are used to solve different types of

equations. Then we examine the history of the methods used to solve the Lane-Emden equation, which is widely used in the

world of astronomy. In this article, we are going to solve the Lane-Emden equation by using one of the common and widely used

spectral methods called collocation method.

1.1. A brief introduction to spectral methods

Spectral and pseudospectral methods have been successfully applied in various problems of science and engineering which modeled

by differential equations in finite domain. For problems whose solutions are sufficiently smooth, they exhibit exponential rates

of convergence/spectral accuracy. We can apply different spectral methods that are used to solve these problems [1, 2, 3].

The most common method is the use of polynomials that are orthogonal, such as the Legendre and Chebyshev polynomials as

basis functions in collocation methods [4, 5, 6]. Furthermore, another numerical methods, such as meshless [7, 8] and semi-

analytical methods and homotopy analysis method [9], have been used to solve science and engineering problems. In addition

to the mentioned methods, recently methods based on machine learning methods, such as kernel-based methods [10, 11] and

neural network methods [12] have been used to solve various type of equations. For instance, a method for solving an ordinary

differential equation by support vector machine was presented in [13]. A feed forward neural network for solving differential

equations of fractional order efficiency, has been proposed in [14]. Using orthogonal polynomials as kernel functions in support

vector machine method have been discussed in [15, 16]. Introducing a new neural network as fractional Chebyshev deep neural

network (FCDN) for solving differential equations of fractional order by using Chebyshev polynomials has been presented in [17].

On the other hand, many science and engineering problems of current interest are set in unbounded domains. In the context

of spectral methods, a number of approaches have been proposed and investigated for treating unbounded domains. The most

common one is the use of polynomials that are orthogonal over unbounded domains, such as the Hermite and Laguerre spectral

methods [18, 19, 20, 21, 22, 23, 24, 25].
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Guo [26, 27, 28, 29] proposed a method in which the original problem in an unbounded domain is mapped to a problem in

a bounded domain and then suitable Jacobi polynomials such as Gegenbauer polynomials are used to approximate the resulting

problems. Another approach is to replace the infinite domain with [-L, L] and the semi-infinite interval with [0, L] by choosing

L sufficiently large. This method is called domain truncation [30]. Another effective direct approach to solving such problems is

based on rational approximations. Christov [31] and Boyd [32, 33] developed some spectral methods for unbounded intervals by

applying mutually orthogonal systems of rational functions. Boyd [32] defined a new spectral basis, named rational functions on

the semi-infinite interval, by mapping them to Chebyshev polynomials. Guo et al. [34] introduced a new set of rational Legendre

functions which are orthogonal to each other in L2(0,+∞). He also introduced an orthogonal system on the half line, induced
by Jacobi polynomials in [35]. They applied a spectral scheme using the rational Legendre functions for solving the Korteweg-de

Vries equation on the half-line. Boyd et al. [36] applied the pseudospectral methods on a semi-infinite interval and compared

rational Chebyshev, Laguerre and mapped Fourier sine methods. Parand et al. [4, 5, 6, 37, 38, 39, 40, 41], applied the spectral

method to solve nonlinear ordinary differential equations on semi-infinite intervals. Their approach was based on rational Tau

and collocation methods.

1.2. Lane-Emden equation

Lane-Emden equations are singular initial value problems related to second-order ordinary differential equations (ODEs) which

have been used to model several phenomena in mathematical physics and astrophysics. Recently, many analytical methods have

been used to solve Lane-Emden equations, however, the main difficulty arises in the singularity of the equations. The methods

used to solve this equation include perturbation technique, quasilinearization approach, Adomian decomposition method, Ritz’s

method, homotopy analysis method, variational iteration method, Lie symmetry approach, spectral and decomposition.

Parand et al. [6, 51, 52, 53, 54] presented two numerical techniques to solve higher ordinary differential equations such as

Lane-Emden. Their approach was based on the pseudospectral and Tau methods. Yousefi [59] presented a numerical method for

solving the Lane-Emden equations. He converted the Lane-Emden equations to integral equations, using integral operator, and

then he applied Legendre wavelet approximations. Recently, also another numerical methods based on the B-spline expansion and

the collocation approach [60], the Liapunov-Schmidt reduction and symmetry-breaking bifurcation theory [61], cubic Hermite

spline functions [62] and matrix relations of Laguerre polynomials [63] were presented to solve the Lane-Emden type equations.

Recently, another methods also have been applied to solve the Lane-Emden problem. For example, in [77] Boubaker

Polynomials Expansion Scheme (BPES) applied to obtain analytical numerical solutions and Bhrawy et al. [78] used shifted

Jacobi pseudo-spectral method with BPES to solve this problem and Shen [79] has combined the compactly supported radial

basis function (RBF) collocation method and the scaling iterative algorithm to solve Lane-Emden-Fowler equation on various

domains. Also, recently, machine learning methods have been used to solve the Lane-Emden problem [80, 81].

In this paper, we want to solve problems such as Lane-Emden equations by using an orthogonal system of functions, namely

Gegenbauer polynomials in collocation method. The Gegenbauer polynomials, often called Ultraspherical polynomials, include

Legendre and Chebyshev polynomials as special or limiting cases. For solving bounded domain problems, we can apply Gegenbauer

polynomials as basis functions in collocation method. But for problems in unbounded domains, we present the spectral method

on the half-line by using an orthogonal rational system of functions, namely rational Gegenbauer functions. We Also prove that

the proposed method has the super-linear convergence rate and obtain results with good accuracy in comparison with other

numerical methods.

The remainder of this paper is organized as follows. Section 2 reviews the desirable properties of Gegenbauer polynomials

and rational Gegenbauer functions as well as the error bound for their function approximation. In Section 3, we describe Lane-

Emden model which contains the well-known types of equations in bounded and unbounded domains. In Section 4, we apply the

Gegenbauer and rational Gegenbauer functions collocation methods to solve some Lane-Emden type equations as the application

of theses methods. Finally, Section 5 makes concluding remarks.

2. Gegenbauer functions

In this section, we first introduce Gegenbauer polynomials and exponential Gegenbauer functions and state some of their basic

features. Then, we approximate a function using Gaussian integration with Gegenbauer-Gauss points and rational Gegenbauer-

Gauss points in the collocation method. The last part is about the discussion of the super-linear convergence for both of shifted

and rational Gegenbauer collocation methods.

Here we introduce the following notation for γ = [a, b] or [0,∞)

L2ϖ(γ) = {v : γ → R | v is measurable and ∥ v ∥ϖ<∞}, (1)

where

∥ v∥ϖ = (
∫
γ

| v(x) |2 ϖ(x)dx)
1
2 , (2)

is the norm induced by the scalar product

< u, v >ϖ=

∫
γ

u(x)v(x)ϖ(x)dx. (3)
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2.1. Properties of Gegenbauer polynomials

The Gegenbauer polynomials Gαn (y) of order α and degree n are defined as follows [88]:

Gαn (y) =

⌊n/2⌋∑
j=0

(−1)j Γ(n + α− j)
j!(n − 2j)!Γ(α) (2y)

n−2j , (4)

where n is an integer, α is a real number greater than − 1
2
and Γ is the Gamma function.

We have the following generating formula for the Gegenbauer polynomials [89]:

(1− 2yx + x2)−α =
∞∑
n=0

Gαn (y)x
n. (5)

So Gαn (y) can be defined as the coefficients of x
n in the expansion of (1− 2yx + x2)−α.

These polynomials are a special case of Jacobi polynomials and generalized Legendre and Chebyshev polynomials. The special

cases α = 0, 1, 12 correspond to the Chebyshev polynomials of first kind, second kind and Legendre polynomials, respectively.

The Gegenbauer polynomials are orthogonal in the interval [−1, 1] with respect to the weight function ρ(y) = (1− y 2)α−
1
2

where α > − 1
2
. For a fixed α, these polynomials are defined under Eq. (3), i.e.

< Gαn , G
α
m >ρ=

π21−2αΓ(n + 2α)

n!(n + α)Γ2(α)
δnm, (6)

where n and m are the degrees of the polynomials and δnm is the Kronecker delta function [90].

They can be determined by the following recurrence formula [90]:

Gα0 (y) = 1, Gα1 (y) = 2αy,

Gαn+1(y) =
1

n + 1
[2y(n + α)Gαn (y)− (n + 2α− 1)Gαn−1(y)] , n ≥ 1. (7)

Gαn (y) is the nth eigenfunction of the singular Sturm-Liouville problem [88]:√
1− y 2 d

dy

[√
1− y 2 d

dy
Gαn (y)

]
− 2αy d

dy
Gαn (y) + n(n + 2α)G

α
n (y) = 0. (8)

In [88] we find Rodrigues formula for Gegenbauer polynomials

(1− y 2)α−
1
2Gαn (y) =

(−2)n

n!

Γ(n + α)Γ(n + 2α)

Γ(α)Γ(2n + 2α)

dn

dy n
(1− y 2)n+α−

1
2 . (9)

From the differentiation formula for Gegenbauer polynomials [88]

G ′αn (y) =
d

dy
Gαn (y) = 2αG

(α+1)
n−1 (y), (10)

and Eqs. (3) and (6), we see that G ′αn (y) are orthogonal in [−1, 1] with ρ̂(y) = 1
4α2
(1− y 2)(α+

1
2 ) as the weight function, thus,

< G ′αn , G
′α
m >ρ̂=

π2−(2α+1)Γ(2α+ n + 1)

(n − 1)!(n + α)Γ2(α+ 1)δnm. (11)

To approximate u(y) as a function with Gegenbauer polynomials, we have the following expansion:

u(y) =

+∞∑
k=0

ckG
α
k (y), (12)

with

ck =
< f , Gαk >ρ

∥ Gαk ∥
2
ρ

. (13)

The ck ’s are the expansion coefficients associated with the family {Gαk (y)}.
To find the unknown coefficients ck ’s, we can use the collocation method with Gegenbauer-Gauss points.

If we want to solve the problem in the γ = [a, b] interval, we should use the mapping ψ(y) = 1
2
[(b − a)y + (b + a)] first,

to map Gegegnbauer polynomials into the interval [a, b] and then apply the collocation method with shifted Gegenbauer-Gauss

points. Indeed, we have the shifted Gegenbauer (SG) polynomials.
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2.2. Properties of rational Gegenbauer functions

The new basis function is recorded as RGαn (x) = G
α
n (y), where L is a constant parameter, y =

x−L
x+L

, y in[−1, 1]. The constant
parameter L specifies the length scale of the map. Boyd [91] provides guidelines for optimizing L map parameters. RGαn (x) is

the nth eigenfunction of the singular Sturm-Liouville problem:

(x + L)

√
x

L

d

dx

[
(x + L)

√
x
d

dx
RGαn (x)

]
+ α

(
L2 − x2

L

)
d

dx
RGαn (x) + n(n + 2α)RG

α
n (x) = 0,

(14)

and satisfies in the following recurrence relation:

RGα0 (x) = 1, RGα1 (x) = 2α
x − L
x + L

,

RGαn+1(x) =
1

n + 1

[
2

(
x − L
x + L

)
(n + α)RGαn (x)− (n + 2α− 1)RGαn−1(x)

]
, n ≥ 1.

(15)

We determine w(x) = 2L
(x+L)2

[
1−

(
x−L
x+L

)2]α− 12
as a non-negative, integrable, and real-valued weight function for rational

Gegenbauer over the interval γ = [0,∞).
Let us denote [92]

ρ(y) = (1− y 2)α−
1
2 , y =

x − L
x + L

, (16)

hence we have [92]
dy

dx
=

2L

(x + L)2
,

dx

dy
=

2L

(y − 1)2 , w(x)
dx

dy
= ρ(y). (17)

Thus {RGαn (x)}n≥0 denotes a system which is mutually orthogonal under Eq. (3), i.e.

< RGαn , RG
α
m >w=

π21−2αΓ(n + 2α)

n!(n + α)Γ2(α)
δnm. (18)

This system is complete in L2w (γ). For any function u ∈ L2w (γ), the following expansion holds

u(x) =

+∞∑
k=0

akRG
α
k (x), (19)

with

ak =
< u,RGαk >w

∥ RGαk ∥
2
w

. (20)

The ak ’s are the expansion coefficients associated with the family {RGαk (x)}.
The differentiation formula for rational Gegenbauer can be obtained as:

RG ′αn (x) =
d

dx
RGαn (x) =

4αL

(x + L)2
RG

(α+1)
n−1 (x). (21)

So, we find that RG ′αn (x) also are mutually orthogonal in L2ŵ (γ) with respect to the weight function ŵ(x) =
(x+L)2

8Lα2

[
1− ( x−L

x+L
)2
]α+ 12 . Hence

< RG ′αn , RG
′α
m >ŵ=

π2−(2α+1)Γ(2α+ n + 1)

(n − 1)!(n + α)Γ2(α+ 1)δnm. (22)

The same as Gegenbauer polynomials, the special cases of the rational Gegenbauer functions are rational Legendre functions

and also rational Chebyshev functions, that were introduced by Guo [34, 92].

Remark 1 It is notable that, in addition to the rational mapping, other mapping y = ϕ(x), in which ϕ : [0,∞)→ [−1, 1], can
be used to generate the new basic functions. Two of them are mentioned below, which can be used in future research. Here

too, L is a constant parameter.

• Exponential mapping: y = 1− 2e
−x
L

• Logarithmic mapping: y = −1 + 2 tanh ( x
L
)

For these mappings, you can proceed in the same way as the process mentioned for rational functions and use them for

interpolation approximation by collocation method.
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2.3. Gegenbauer and rational Gegenbauer interpolation approximation

Authors of [93, 94] introduced Gauss integration. Let PN be the space of polynomials of degree less than or equal to N and yj ,
j = 0, 1, . . . , N, be the N + 1 roots of the polynomial GαN+1(y). These points are known as Gegenbauer-Gauss points.

By Gaussian integration we have:

∫ 1

−1
u(y)ρ(y)dy =

N∑
j=0

u(yj)ρj ∀u ∈ P2N , (23)

where ρj as corresponding Christoffel numbers are defined as [88]:

ρj =
22−2απΓ(N + 1 + 2α)

(N + 1)!Γ2(α)

1

(1− yj 2)[ ddyGαN+1(yj)]2
. (24)

Here we define the operator IN : L
2
w [−1, 1]→ PN by

INu(y) =

N∑
k=0

ckG
α
k (y). (25)

INu is the orthogonal projection of u upon PN with respect to the inner product (3) and the norm (2) with γ = [−1, 1]. Thus
by the orthogonality of the Gegenbauer polynomials, we have [27]

< INu − u, Gαi >ρ= 0 ∀Gαi ∈ PN . (26)

We note that all of the above statements can be generalized to the case when γ = [a, b] by the shifted Gangbaner polynomials.

In [34, 92] Guo introduced rational Legendre-Gauss points and rational Chebyshev-Gauss points, respectively. Now we want

to define rational Gegenbauer-Gauss interpolation. Let

RGαN = span
{
RGα0 , RG

α
1 , ..., RG

α
N

}
, (27)

and

xj = L
1 + yj
1− yj

j = 0, 1, . . . , N, (28)

which are called as rational Gegenbauer-Gauss nodes and yj are Gegenbauer-Gauss points. In fact, these points are zeros of the

function RGαN+1(x). Using Gauss integration, we have:∫ ∞

0

u(x)w(x)dx =

∫ 1

−1
u

(
L
1 + y

1− y

)
ρ(y)dy

=

N∑
j=0

u(xj)wj ∀u ∈ RGα2N , (29)

where

wj =
22−2απΓ(N + 1 + 2α)

(N + 1)!Γ2(α)

2L

xj(xj + L)
2[ d
dx
RGαN+1(xj)]

2
, (30)

are the corresponding weights with the N + 1 rational Gegenbauer-Gauss nodes which can be obtained from Eqs. (24) and (28).

PNu stands for the interpolating function of a smooth function u on a semi-infinite interval. It is a component of the RGαN
structure and is described as

PNu(x) =

N∑
k=0

akRG
α
k (x). (31)

PNu is the orthogonal projection of u upon RGαN with respect to the inner product (3) and the norm (2) with γ = [0,∞). Thus
by the orthogonality of the rational Gegenbauer functions, we have [27]

< PNu − u,RGαi >w= 0 ∀RGαi ∈ RGαN . (32)

We take into account the residual function, Res(x), when the expansion is inserted into the governing equation in order to use

a collocation method. The ak ’s must be chosen to satisfy the boundary constraints while producing the residual zero at the

greatest number of (appropriately chosen) spatial places.
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2.4. Convergence of the function approximation

We describe this subsection for both of shifted and rational Gegenbauer collocation methods. for approximating any function

u(x) ∈ L2w (γ) where γ = [0, ζ] and ζ = 1 or ∞, we can determine the error of the solution as follows if the operator IPN
considered as IN or PN and ϖ as their corresponding weight w or ρ, respectively:

eN =∥ IPNu − u ∥2ϖ . (33)

According to the orthogonality and completeness of the systems {SGαj (x)}j≥0 and {RGαj (x)}j≥0 the following theorem, whose
proof approach is almost the same as the proof of theorem 1 in [95], can be achieved.

Theorem 1 Let IPNu(x) is the approximation of u(x) ∈ L2ϖ(γ), (γ = [0, 1] or [0,∞]) and F(y) = u(ϕ(y)) is analytic on [−1, 1],
then the error of the approximation can be bounded as follows:

eN ≤
∞∑
i=N

π21−2i−2αΓ(i + 2α)M2i
(i + α)Γ2(i + α)Γ(i + 1)

(34)

where ϕ(y) = L
(
1+y
1−y

)
or ϕ(y) = 2y − 1 and Mi = max |F (i)(y)|, y ∈ (−1, 1).

Although this theorem expresses the approximation convergence rate of the collocation method, but we can improve this rate

for special case when α ≥ 0 to supper-linear convergence rate.

Theorem 2 The convergence rate of shifted and rational Gegenbauer collocation method for α ≥ 0 is super-linear.

Proof. First, we show that Γ(i+2α)Γ(i+α) < 2
i × Γ(2α)

Γ(α) as follow:

Γ(i + 2α)

Γ(i + α)
=
(i + 2α− 1)(i + 2α− 2) . . . 2αΓ(2α)
(i + α− 1)(i + α− 2) . . . αΓ(α)

=
(i + 2α− 1)
(i + α− 1)︸ ︷︷ ︸

<2

× (i + 2α− 2)
(i + α− 2)︸ ︷︷ ︸

<2

× · · · × (1 + 2α)
(1 + α)︸ ︷︷ ︸
<2

× 2α
α︸︷︷︸
≤2

×Γ(2α)
Γ(α)

< 2i × Γ(2α)
Γ(α)

. (35)

Now, let consider M ≥ Mi for i ≥ N. So, Eq. (34), can be rewritten as the following:

eN ≤ (πM221+2α)
Γ(2α)

Γ(α)︸ ︷︷ ︸
Sα

∞∑
i=N

2−2i × 2i

i!Γ(i + α+ 1)
= Sα

∞∑
i=N

2−i

i!Γ(i + α+ 1)
≤ Sα

∞∑
i=N

2−i

(i!)2
. (36)

The sequence aN =
∑∞
i=N

2−i

(i!)2
is super-linearly convergent to zero and so, {eN} is also converges to zero super-linearly. �

3. Lane-Emden type singular differential equations

It is common in several non-Newtonian models of fluid mechanics, mathematical physics, and astrophysics to encounter singular

initial-value problems in ordinary differential equations [96, 97]. Examples of theories that are modeled using Lane-Emden

equations include the theories of the internal structure of stars, galaxy clusters, the thermal behavior of a spherical cloud of gas

acting under the mutual attraction of its molecules, and theories of thermionic currents. In essence, the polytropic theory of stars

derives from thermodynamic considerations, which address the problem of energy transfer through the movement of material

across various layers of the star. Numerous studies have concentrated on these equations, which are some of the fundamental

ones in the theory of star structure [42, 43, 44, 47, 48, 49, 50, 55, 56, 57, 58, 59, 64, 65, 67, 68, 69, 98].

Lane-Emden equations have two the following forms:

1.

{
y ′′(x) + k1

a(x)
y ′(x) + k2

b(x)
y(x) + f (x, y) = 0, 0 < x ≤ 1,

y(0) = A, y ′(0) = B,
(37)

where A,B, k1 and k2 are real constants, a(x) and b(x) are continuous and maybe a(0) = 0, b(0) = 0 and f (x, y) is a continuous

real valued function [99].

2.

{
y ′′(x) + 2

x
y ′(x) + f (y) = 0, x ≥ 0,

y(0) = A, y ′(0) = B,
(38)
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where A and B are real constants, f (y) is a given function and x is defined on semi-infinite domain.

We will have the standard Lane-Emden equation with f (y) = ym that values of m lie in the interval [0, 5]:

y ′′(x) +
2

x
y ′(x) + ym(x) = 0 x ≥ 0, (39)

which may also be written as
1

x2
d

dx

(
x2
dy

dx

)
= −ym(x), (40)

with the same boundary conditions which were mentioned previously [51].

4. Solving Lane-Emden equations

4.1. Lane-Emden problems defined on finite domain

In this part, we apply collocation method via the shifted Gegenbauer-Gauss points to approximate the Lane-Emden equations

that are determined in [0, 1]. So we should expand y(x) in equations as given in the following:

INy(x) =

N∑
k=0

ckSG
α
k (x), (41)

where SGαk (x) are shifted Gegenbauer (SG) polynomials that can be obtained by ψ(x) =
1
2 (x + 1) mapping. After that, we

construct the residual function (Res(x)) by substituting y(x) by the above expansion in the equation and its boundary conditions.

By equalizing Res(x) to zero at N − 1 shifted Gegenbauer-Gauss points and two boundary conditions, we have N + 1 equations
that generate a set of N + 1 nonlinear equations that can be solved by Newton method for the unknown coefficients ck .

The advantage of solving problems with Gegenbauer polynomials as orthogonal functions is the existence of α parameter

which can be varied to obtain a better solution.

In the demonstrated examples of this section, the comparison of values of y(x) obtained by the presented method and exact

values will be presented.

4.1.1. Example 1 Consider the following nonlinear Lane-Emden type equation:{
y ′′(x) + 2

x
y ′(x) + y(x)− (x3 + x2 + 12x + 6) = 0, 0 < x ≤ 1,

y(0) = 0, y ′(0) = 0.
(42)

It is easy to see that the exact solution is y(x) = x2 + x3.

This equation has been solved by [56, 68, 100, 101] with linearization, VIM, HPM and TSADM methods, respectively.

Solution: First we make the following equations and then we solve the system with N + 1 equations to get ck .

Res(x) =
d2

dx2
INy(x) +

2

x

d

dx
INy(x) + INy(x)− (x3 + x2 + 12x + 6),

Res(xj) = 0, j = 1, 2, ..., N − 1,
INy(0) = 0,

d

dx
INy(x)

∣∣∣
x=0
= 0, (43)

where xj are shifted Gegenbauer-Gauss points with α > − 12 .
The answer for y(x) with N ≥ 3 and all α > − 1

2
is:

− 0.5 + 1.75x + 0.625(2x − 1)2 + 0.125(2x − 1)3 = x2 + x3, (44)

whose simplified form is equal to the exact solution.

4.1.2. Example 2 Consider the following problem:{
y ′′(x) + 8

x
y ′(x) + xy(x)− (x5 + x4 − 44x2 + 30x) = 0, 0 < x ≤ 1,

y(0) = 0, y ′(0) = 0.
(45)

It is easy to see that the exact solution is y(x) = x4 − x3.
This type of equation has been solved by [56, 64, 65, 101] with linearization, HPM, HAM and TSADM methods respectively.

Solution: The same as example 1, we solve the system of this problem to obtain ck and the obtained answer for y(x) with

N ≥ 4 and all α > − 1
2
is:

0.0625− 0.25x + 0.125(2x − 1)3 + 0.0625(2x − 1)4 = x4 − x3, (46)

whose simplified form is equal to the exact solution.
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4.1.3. Example 3 Consider the following singular initial value problem:{
y ′′(x) + 2

x
y ′(x)− 6y(x)− 4x2y(x) = 0, 0 < x ≤ 1,

y(0) = 1, y ′(0) = 0.
(47)

The exact solution is y(x) = ex
2
.

This type of equation has been solved by [56, 68, 100] with linearization, VIM and HPM methods respectively.

Solution: We solve this example with some cases of α, i.e. α = −0.45, 0, 0.5, 1, 1.5 and 2 and then, for choosing a more
acceptable value for α parameter, compare their results in Table 1 by measuring the ∥Res∥2 as:

∥Res∥2 =
∫ 1

0

Res2(x) dx.

The validity of the method is based on the assumption that it converges by increasing the number of Gauss points. Taking this

table into account, the proposed method leads to more accurate solutions with high convergence by increasing N. As can be

seen, α = −0.45 has more accurate result among the reported values. So, we show the logarithmic graph of absolute coefficients
|ck | of SG functions in the approximate solutions of the problem, with α = −0.45 and N = 20 in Fig. 1.

4.1.4. Example 4 Consider the Lane-Emden type equation as follows:{
y ′′(x) + 2

x
y ′(x) + 8ey(x) + 4e

y(x)
2 = 0, 0 < x ≤ 1,

y(0) = 0, y ′(0) = 0.
(48)

The exact solution of this problem is −2ln(1 + x2).
This type of equation has been solved by [68, 100] with VIM and HPM methods respectively.

Solution: Similar to the previous example, we solve this equation with various values of α parameter to approximate y(x) and

in Table 2, we show the convergence rate and accuracy of this method for these values by presenting ∥Res∥2, which was already
defined. In this example again α = −0.45 has better result and we plot the logarithmic graph of absolute coefficients |ck | of SG
functions by this parameter with N = 20 in Fig. 2.

4.2. Lane-Emden problems defined on semi-infinite domain

This section applies the PN operator to the y(x) function under Eq. (31). The residual function is then created by replacing

y(x) with PNy(x) in the model equation (38). We may determine the coefficients ak by equalizing Res(x) to 0 at rational

Gegenbauer-Gauss points (xj , j = 1, 2, ..., N − 1) and two boundary conditions. We see that a set of N + 1 nonlinear equations
resulting from these N + 1 equations can be solved using a well-known technique like the Newton method.

Two parameters in the rational Gegenbauer collocation method (RGC) can be changed to produce better solutions to issues.

These variables are L and alpha.

The following examples are defined on the semi-infinite domain. We solve them and compare the presented work with some

well-known results afterward.

4.2.1. Example 1 Consider the standard Lane-Emden equation:{
y ′′(x) + 2

x
y ′(x) + ym(x) = 0, x ≥ 0,

y(0) = 1, y ′(0) = 0.
(49)

The values of m which are physically interesting, lie in the interval [0, 5]. Exact solutions for Eq. (49) are known only for the

values m = 0, 1 and 5. For other values of m, the Lane-Emden equation is to be integrated numerically. Horedt [102] found

exact values for the first zeros and values of y(x) for this equation by different value of m.

Solution: By solving the following equations, we approximate y(x) and proceed to obtain ak .

Res(x) =
d2

dx2
PNy(x) +

2

x

d

dx
PNy(x) + PNy

m(x),

Res(xj) = 0, j = 1, 2, ..., N − 1,
PNy(0) = 1,

d

dx
PNy(x)

∣∣∣
x=0
= 0, (50)

where xj are rational Gegenbauer-Gauss points.

We first solve this equation by rational Gegenbauer function with some cases of α and varied L to obtain the first zeros of

the equations equal to exact values which were obtained by Horedt [102] for m = 2, 3 and 4 and report them in Table 3. Then,
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to compare the results which are related to each α, we present the values of y(x) for m = 2, 3 and 4 that are obtained by

presented method and those obtained by Horedt [102] in Tables 4, 5 and 6, respectively. In addition, we report the ∥Res∥2 of
each of them as:

∥Res∥2 =
∫ ∞

0

Res2(x) dx,

in these tables. According to these tables, we can find that α = 0.5, 0.5 and 1 are more acceptable value of α parameter among

the reported values for m = 2, 3 and 4, respectively.

Moreover, in Tables 7 and 8, ∥Res∥2 that obtained by solving Lane-Emden equation for m = 3 and m = 4 with N = 10
and N = 20 are reported to show the convergence and accuracy of our method. In these tables, we also present the values

of L parameter for each α. Furthermore, we plot the logarithmic graphs of absolute coefficients |ak | of RG functions in the
approximate solutions of the standard Lane-Emden equation for m = 3 and m = 4 with α = 0.5 and 1 by N = 20 in Figs. 3 and

4, respectively. These graphs illustrate that the method has an appropriate convergence rate.

The resulting graph of the standard Lane-Emden equation for m = 2, 3 and 4 is shown in Fig. 5.

4.2.2. Example 2 Consider the isothermal gas spheres equation:{
y ′′(x) + 2

x
y ′(x) + ey(x) = 0, x ≥ 0,

y(0) = 0, y ′(0) = 0.
(51)

A series solution has been obtained by Wazwaz [47], Liao [49], Singh et al. [66] and Ramos [58] by using ADM, HAM, MHAM

and series expansion respectively.

This equation has been solved by [47, 49, 51, 58, 64, 65, 66, 98] and we compare our solution with results presented by

Wazwaz [47].

Solution: The same as previous example, we solve this equation with some cases of α parameter and present values of y(x)

obtained by RGC method with N = 20 and L = 1 and compare them with the results reported by Wazwaz [47] in Table 9. In

Fig. 6, we present the graph of y(x) that obtained by solving this example with proposed method.

4.2.3. Example 3 Consider the following Lane-Emden equation:{
y ′′(x) + 2

x
y ′(x) + sin(y(x)) = 0, x ≥ 0,

y(0) = 1, y ′(0) = 0.
(52)

This equation has been solved by [47, 51] by ADM (Adomian Decomposition Method) and HFC (Hermit Functions Collocation)

methods. We compare our results with those presented by Wazwaz [47].

Solution: The value of y(x) obtained by solving this equation with different α, N = 20 and L = 1 and results given by Wazwaz

[47] are shown in Table 10. In addition, the resulting graph of this example is shown in Fig. 7.

4.2.4. Example 4 Consider the following nonlinear initial value Lane-Emden type equation:{
y ′′(x) + 2

x
y ′(x) + sinh(y(x)) = 0, x ≥ 0,

y(0) = 1, y ′(0) = 0.
(53)

This equation has been solved by [47, 51] with ADM and HFC methods.

Solution: In order to compare the presented method with those obtained by Wazwaz [47], the value of y(x) of this problem

for different values of α, N = 20 and L = 1 are presented in Table 11. Also, the graph of the approximation of y(x) is shown

in Fig. 8.

5. Conclusions

In order to solve nonlinear singular initial value problems, particularly those involving generalized Lane-Emden type equations,

we used the collocation approach. This technique is simple to use and produces the needed accuracy. The selection of the basis

functions for the collocation approach is a crucial consideration. By assuming that the truncation N is large enough, any solution

can be represented to arbitrarily high accuracy thanks to the basis functions’ significant qualities of fast computation, quick

convergence, and completeness. In this paper, the basis functions were rational Gegenbauer functions and shifted Gegenbauer

polynomials. Some Lane-Emden type equations in the interval [0, 1] and semi-infinite domain have been successfully solved

using the collocation approach by these functions. The advantage of solving problems with these Gegenbauer functions as

orthogonal functions is the existence of the parameter α that can be varied to reach better solutions. We proved the super-linear

convergence rate of our method, theoretically and got help from ∥Res∥2 to show the convergence rate and accuracy of the
method, numerically.

Comput. Math. Comput. Model. Appl. 2022, Vol. 1, Iss. 1, pp. 69–85 Copyright c⃝ 2022 Shahid Beheshti University. 77



Computational Mathematics and Computer Modeling with Applications F. Baharifard and K. Parand

Table 1. ∥Res∥2 that obtained by presented method with various values of α in solving example 3 in the finite domain problems
part.

α N = 10 N = 15 N = 20

−0.45 3.7184e−07 1.6355e−15 5.0153e−25
0 5.0370e−07 2.9069e−15 1.1080e−24
0.5 6.5537e−07 4.9360e−15 2.3380e−24
1 8.0744e−07 7.6951e−15 4.4606e−24
1.5 9.5636e−07 1.1240e−14 7.8555e−24
2 1.0998e−06 1.5600e−14 1.2926e−23

Table 2. ∥Res∥2 that obtained by presented method with various values of α in solving example 4 in the finite domain problems
part.

α N = 10 N = 15 N = 20

−0.45 6.8440e−06 2.8626e−11 3.4619e−12
0 9.7548e−06 3.8604e−11 7.6664e−12
0.5 1.3303e−05 8.6230e−11 8.4983e−12
1 1.7034e−05 1.8684e−10 9.4589e−12
1.5 2.0817e−05 2.5247e−10 1.8009e−11
2 2.4577e−05 2.5772e−10 1.8640e−11

Table 3. Comparison the first zero of standard Lane-Emden equation obtained by RGC method and exact numerical values [102].

m N RGC method Exact value

2 10 4.35287460 4.35287460

3 20 6.89684862 6.89684862

4 20 14.9715463 14.9715463

Table 4. Comparison of y(x) for standard Lane-Emden equation with m = 2, between RGC (with different α) method when

N = 10 and exact values given by Horedt[102].

x α = −0.45 α = 0 α = 0.5 α = 1 α = 1.5 α = 2 Exact value

L = 0.6278 L = 0.6700 L = 0.7122 L = 0.7488 L = 0.7833 L = 0.8176 [102]

0.0 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

0.1 0.9982747 0.9983050 0.9983418 0.9983630 0.9983613 0.9983356 0.9983350

0.5 0.9587730 0.9590561 0.9592533 0.9593512 0.9593880 0.9593829 0.9593527

1.0 0.8503391 0.8496522 0.8491799 0.8489235 0.8487759 0.8486836 0.8486541

3.0 0.2390090 0.2401446 0.2406964 0.2410017 0.2411283 0.2411569 0.2418241

4.0 0.0480526 0.0487107 0.0483886 0.0482222 0.0480321 0.0478330 0.0488401

4.3 0.0061012 0.0069678 0.0067036 0.0066653 0.0066246 0.0065833 0.0068109

4.35 0.0006226 0.0005968 0.0003597 0.0003575 0.0003552 0.0003529 0.0003660

∥Res∥2 2.40e−03 1.30e−03 7.82e−04 8.52e−04 1.55e−03 2.99e−03

Table 5. Comparison of y(x) for standard Lane-Emden equation with m = 3, between RGC (with different α) method when

N = 20 and exact values given by Horedt [102].

x α = −0.45 α = 0 α = 0.5 α = 1 α = 1.5 α = 2 Exact value

L = 0.9902 L = 1.5636 L = 1.8550 L = 1.9441 L = 2.0353 L = 2.1264 [102]

0.0 1.0000126 1.0000000 1.0000126 1.0000000 1.0000126 1.0000000 1.0000000

0.1 0.9983351 0.9983362 0.9983360 0.9983359 0.9983357 0.9983358 0.9983358

0.5 0.9598286 0.9598429 0.9598382 0.9598384 0.9598388 0.9598394 0.9598391

1.0 0.8550313 0.8550683 0.8550557 0.8550562 0.8550569 0.8550577 0.8550576

5.0 0.1112628 0.1107056 0.1108296 0.1108270 0.1108252 0.1108237 0.1108198

6.0 0.0444607 0.0434548 0.0437481 0.0437440 0.0437419 0.0437407 0.0437380

6.8 0.0042795 0.0041250 0.0041703 0.0041693 0.0041686 0.0041683 0.0041678

6.896 0.0000370 0.0000356 0.0000360 0.0000360 0.0000360 0.0000360 0.0000360

∥Res∥2 1.63e−05 4.86e−06 7.99e−08 1.16e−07 3.94e−07 1.50e−06
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Table 6. Comparison of y(x) for standard Lane-Emden equation with m = 4, between RGC (with different α) method when

N = 20 and exact values given by Horedt [102].

x α = −0.45 α = 0 α = 0.5 α = 1 α = 1.5 α = 2 Exact value

L = 1.2740 L = 1.3971 L = 1.5280 L = 1.6535 L = 1.7746 L = 1.8917 [102]

0.0 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

0.1 0.9983366 0.9983366 0.9983367 0.9983367 0.9983367 0.9983367 0.9983367

0.2 0.9933864 0.9933863 0.9933862 0.9933862 0.9933862 0.9933862 0.9933862

0.5 0.9603112 0.9603111 0.9603109 0.9603109 0.9603109 0.9603109 0.9603109

1.0 0.8608145 0.8608144 0.8608140 0.8608138 0.8608138 0.8608138 0.8608138

5.0 0.2358982 0.2359128 0.2359192 0.2359217 0.2359225 0.2359228 0.2359227

10.0 0.0596108 0.0596517 0.0596659 0.0596706 0.0596723 0.0596729 0.0596727

14.0 0.0082593 0.0082960 0.0083125 0.0083202 0.0083242 0.0083265 0.0083305

14.9 0.0005705 0.0005735 0.0005749 0.0005755 0.0005758 0.0005760 0.0005764

∥Res∥2 5.05e−08 7.49e−09 1.57e−09 7.95e−10 1.22e−09 2.52e−09

Table 7. ∥Res∥2 that obtained by presented method with various values of α in solving standard Lane-Emden equation with
m = 3 and different N.

N = 10 N = 20

α L ∥Res∥2 L ∥Res∥2

−0.45 1.1161 8.41e−05 0.9902 1.63e−05
0 1.1658 4.65e−05 1.5636 4.86e−06
0.5 1.2024 3.38e−05 1.8550 7.99e−08
1 1.2277 4.80e−05 1.9441 1.16e−07
1.5 1.2475 1.11e−04 2.0353 3.94e−07
2 1.2666 2.60e−04 2.1264 1.50e−06

Table 8. ∥Res∥2 that obtained by presented method with various values of α in solving standard Lane-Emden equation with
m = 4 and different N.

N = 10 N = 20

α L ∥Res∥2 L ∥Res∥2

−0.45 1.5990 5.13e−06 1.2740 5.05e−08
0 1.6162 3.84e−06 1.3971 7.49e−09
0.5 1.6585 3.36e−06 1.5280 1.57e−09
1 1.8556 6.55e−07 1.6535 7.95e−10
1.5 2.0782 2.32e−06 1.7746 1.22e−09
2 2.2776 2.40e−05 1.8917 2.52e−09
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Table 9. Comparison of y(x) for example 2 in the semi-infinite domain problems part between RGC method when N = 20 and

L = 1 and results given by Wazwaz [47].

x α = −0.45 α = 0 α = 0.5 α = 1 α = 1.5 α = 2 [47]

0.0 0.0000002730 0.0000002660 0.0000001100 0.0000000550 0.0000000550 0.0000000360 0.0000000000

0.1 −0.0016677956 −0.0016665980 −0.0016660715 −0.0016660157 −0.0016658577 −0.0016656584 −0.0016658339
0.2 −0.0066547655 −0.0066534760 −0.0066528258 −0.0066530090 −0.0066530782 −0.0066530558 −0.0066533671
0.5 −0.0411666095 −0.0411588736 −0.0411559131 −0.0411549620 −0.0411544204 −0.0411540527 −0.0411539568
1.0 −0.1588571140 −0.1588398270 −0.1588330211 −0.1588304094 −0.1588290990 −0.1588283482 −0.1588273537
1.5 −0.3379983541 −0.3380129425 −0.3380173539 −0.3380190421 −0.3380195160 −0.3380195473 −0.3380131103
2.0 −0.5598857992 −0.5598457955 −0.5598307392 −0.5598254313 −0.5598234401 −0.5598226916 −0.5599626601
2.5 −0.8062215633 −0.8062831163 −0.8063128797 −0.8063271711 −0.8063341436 −0.8063375927 −0.8100196713

Table 10. Comparison of y(x) for example 3 in the semi-infinite domain problems part between RGC method when N = 20 and

L = 1 and results given by Wazwaz [47].

x α = −0.45 α = 0 α = 0.5 α = 1 α = 1.5 α = 2 [47]

0.0 1.0000001106 1.0000000300 0.9999999600 1.0000000370 0.9999999440 0.9999999750 1.0000000000

0.1 0.9985268545 0.9985337971 0.9985715030 0.9986027200 0.9986045423 0.9985508146 0.9985979358

0.2 0.9942824626 0.9943917179 0.9944162806 0.9943890391 0.9943543156 0.9943042582 0.9943962733

0.5 0.9642098388 0.9646863473 0.9650262090 0.9651958893 0.9652520039 0.9652180589 0.9651777886

1.0 0.8611661670 0.8624107858 0.8632684148 0.8637138261 0.8638961208 0.8639045113 0.8636811027

1.5 0.7068170726 0.7056937395 0.7051493583 0.7050150012 0.7050449348 0.7050825363 0.7050419247

2.0 0.5006486878 0.5039795671 .50586930513 0.5065212311 0.5065632398 0.5063863111 0.5063720330

Table 11. Comparison of y(x) for example 4 in the semi-infinite domain problems part between RGC method when N = 20 and

L = 1 and results given by Wazwaz [47].

x α = −0.45 α = 0 α = 0.5 α = 1 α = 1.5 α = 2 [47]

0.0 1.0000003320 0.9999997830 1.0000000320 1.0000000040 0.9999999640 0.9999998790 1.0000000000

0.1 0.9979693899 0.9979663470 0.9979974487 0.9980310259 0.9980447243 0.9980152317 0.9980428414

0.2 0.9920720162 0.9921841621 0.9922239458 0.9922076806 0.9921771845 0.9921359409 0.9921894348

0.5 0.9509655503 0.9513798283 0.9517081280 0.9518956384 0.9519802170 0.9519841324 0.9519611019

1.0 0.8156715868 0.8167543431 0.8175735172 0.8180511293 0.8182905969 0.8183685057 0.8182516669

1.5 0.6272322965 0.6261933528 0.6256220407 0.6254314378 0.6254210034 0.6254553927 0.6258916077

2.0 0.4007310194 0.4037527164 0.4056767515 0.4064909251 0.4066821960 0.4066083001 0.4136691039
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Figure 1. Logarithmic graph of absolute coefficients |ck | of the shifted
Gegenbauer functions for approximating y(x) of example 3 in the finite

domain problems part.

Figure 2. Logarithmic graph of absolute coefficients |ck | of the shifted
Gegenbauer functions for approximating y(x) of example 4 in the finite

domain problems part.

Figure 3. Logarithmic graph of absolute coefficients |ak | of the rational
Gegenbauer functions for approximating y(x) of the standard Lane-Emden

equation with m = 3.

Figure 4. Logarithmic graph of absolute coefficients |ak | of the rational
Gegenbauer functions for approximating y(x) of the standard Lane-Emden

equation with m = 4.
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Figure 5. Graph of standard Lane-Emden equation for m = 2, 3 and 4.

Figure 6. Graph of the approximation of y(x) of

example 2 in the semi-infinite domain problems

part.

Figure 7. Graph of the approximation of y(x) of

example 3 in the semi-infinite domain problems

part.

Figure 8. Graph of the approximation of y(x) of

example 4 in the semi-infinite domain problems

part.
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88. G. Szegö. Orthogonal Polynomials, 4th edition, AMS Coll. Publ, 1975.

89. A. I. Zayed. On The singularities Of Gegenbauer (Ultraspherical) expansions, Transactions of the American Mathematical Society,

262:487–503, 1980.

90. I. Stegun, M. Abramowitz. Handbook of Mathematical Functions, Dover, New York, 1968.

91. J. P. Boyd. The optimzation of convergence for Chebyshev polynomial methods in an unbounded domain, Journal of Computational

Physics, 45:43–79, 1980.

92. B. Y. Guo, J. Shen, Z. Q. Wang. Chebyshev rational spectral and pseudospectral methods on a semi-infinite interval, International

Journal for Numerical Methods in Engineering, 53:65–84, 2002.

93. C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang. Spectral Methods in Fluid Dynamic, Springer-Verlag, New York, 1987.

94. D. Gottlieb, M. Y. Hussaini, S. Orszag. Theory and Applications of Spectral Methods in Spectral Methods for Partial Differential

Equations edited by R. Voigt and D. Gottlieb and M.Y. Hussaini, SIAM, Philadelphia, 1984.

95. F. Baharifard, K. Parand, M. M. Rashidi. Novel solution for heat and mass transfer of a MHD micropolar fluid flow on a moving plate

with suction and injection, Engineering with Computers, 1–18, 2022.

96. S. Chandrasekhar. Introduction to the Study of Stellar Structure, Dover, New York, 1967.

97. H. T. Davis. Introduction to Nonlinear Differential and Integral Equations, Dover, New York, 1962.

98. A. Aslanov. Determination of convergence intervals of the series solutions of Emden-Fowler equations using polytropes and isothermal

spheres, Physics Letters A, 372:3555–3561, 2008.

99. F. Geng, M. Cui, B. Zhang. Method for solving nonlinear initial value problems by combining homotopy perturbation and reproducing

kernel Hilbert space methods, Nonlinear Analysis: Real World Applications, 11:637–644, 2010.

100. M. S. H. Chowdhury, I. Hashim. Solutions of a class of singular second-order IVPs by homotopy-perturbation method, Physics Letters

A, 365:439–447, 2007.

101. B. Q. Zhang, Q. B. Wu, X. G. Luo. Experimentation with two-step Adomian decomposition method to solve evolution models, Applied

Mathematics and Computation, 175:1495–1502, 2006.

102. G. P. Horedt. Polytropes Applications in Astrophysics and Related Fieldsa, Klawer Academic, Dordrecht, 2004.

Comput. Math. Comput. Model. Appl. 2022, Vol. 1, Iss. 1, pp. 69–85 Copyright c⃝ 2022 Shahid Beheshti University. 85


	1 Introduction
	1.1 A brief introduction to spectral methods
	1.2 Lane-Emden equation

	2 Gegenbauer functions
	2.1 Properties of Gegenbauer polynomials
	2.2 Properties of rational Gegenbauer functions
	2.3 Gegenbauer and rational Gegenbauer interpolation approximation
	2.4 Convergence of the function approximation

	3 Lane-Emden type singular differential equations
	4 Solving Lane-Emden equations
	4.1 Lane-Emden problems defined on finite domain
	4.1.1 Example 1
	4.1.2 Example 2
	4.1.3 Example 3
	4.1.4 Example 4

	4.2 Lane-Emden problems defined on semi-infinite domain
	4.2.1 Example 1
	4.2.2 Example 2
	4.2.3 Example 3
	4.2.4 Example 4


	5 Conclusions

