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This paper introduces a new numerical solution based on the least squares support vector machine (LS-SVR) for solving

nonlinear ordinary differential equations of high dimensionality. We apply the quasilinearization method to linearize the

magnetohydrodynamic (MHD) flow of nanofluid around a stretching cylinder, thereby transforming it into a linear problem.

We then utilize LS-SVR with fractional Hermite functions as basis functions to solve this problem over a semi-infinite

interval. Our numerical results confirm the effectiveness of this approach. Copyright c⃝ 2022 Shahid Beheshti University.
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1. Introduction

We can define nanofluids simply as fluids that are capable of thermal transfer. Nanofluids have attracted the attention of many

scientists in recent years due to the significant increase in thermal properties. The particle size used in nanofluids is from 1 nm

to 100 nm. Nanofluids can improve heat transfer compared to pure liquids [61]. There are numerous publications on nanofluids’

characteristics as transfer rates, greater viscosity, and higher thermal conductivity. A differential equation is used to understand

the nanofluids problem. Khan et al [21] studied the boundary layer flow of a nanofluid past a stretching sheet. Parand et al.

applied the Hermite pseudospectral method for solving the (MHD) flow [50]. Hayat et al. discussed [18] the flow of viscous

nanofluid due to a rotating disk. Reddy et al. [55] analyzed the (MHD) boundary layer slip flow of a Maxwell nanofluid. In 2017,

Ibrahim examined the (MHD) boundary layer stagnation point flow and heat transfer of a nanofluid [20].

There are various problems in unbounded domains. One of these methods is the spectral methods. Spectral methods have

expanded rapidly over the past three decades. These methods have been widely used in various branches of science, such as

fluid mechanics, quantum mechanics, physics, and chemistry [4, 12, 43]. At present, as with finite difference and finite element

methods, they are powerful tools for solving the numerical differential equations [38, 47, 48]. Extraordinary features of spectral

methods are high accuracy and infinite convergence. The main idea of these methods stems from the Fourier analysis [7, 11].

Spectral methods can be used to solve problems in semi-infinite domains. Guo et al. [13] proposed a method for semi-infinite

intervals.

Researchers [41, 51] presented an approach that is based on the mapping of bases in semi-infinite domains. The use of

mappings x = ϕ(ξ), ϕ : (−∞,+∞)→ [0,+∞) is important problem. By placing ϕ(ξ) instead of x , the problem in the infinite

intervals becomes a problem in the semi-infinite domains [42]. There is another approach for solving such problems which is

based on rational approximations. In reference, [52] have applied spectral methods as a rational for this method. In addition, they

have studied fractional approximations on unbounded domains [19, 22, 62]. Researchers have investigated the use of fractional

orthogonal polynomials of order n and obtained the convergence of polynomials order [10, 46]. For example, for solving the

Lane-Emden equation is used the operation matrix of fractional derivative Chebyshev polynomials is [39].
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Another approach is named domain truncation [7] and then is used for semi-infinite intervals [0, xmax ],where xmax is large enough

to be selected. The researchers studied this approach to solve nonlinear different equations [40, 44]. When the domain truncation

approach is used for infinite and semi-infinite intervals, As the xmax increases, the accuracy of the infinite order increases, the

only way to do this is to increase the number of series sentences. Boyd [8] offers solutions for this method.

Machine learning methods can also be used to solve differential equations [26, 35], and one of these methods is the least

squares support vector machine (LS-SVM) [34]. The support vector machine has gained massive popularity in recent years.

The reason is their robust classification performance-even in high-dimensional spaces. The goal of the support vector machine

algorithm is to obtain a hyperplane in n-dimensional space with a maximum margin. The n-the number of features that distinctly

classify the data points [58, 59, 60]. Another advantage of the support vector machine is convergent, which must be global

minima because it is a convex optimization problem [14]. Data points are classified based on n features [28, 29, 31, 58]. This type

of learning system is used to both categorize and estimate the data fitness function. References have been able to use different

bases in this method to solve differential equations in infinite and semi-infinite ranges [15, 49]. Mehrkanoon et al. [27] are using

LS-SVM for solving the ordinary differential equation. The least squares regression method (LS-SVR) is another method for

solving differential equations. We propose a solution for this problem based on LS-SVR with fractional Hermite functions.

The rest of this paper is organized as follows: in section 2, we consider the mathematical model to solve the nanofluids

problem. In section 3, our method is described. We show the results of numerical experiments in section 4. Finally, a conclusion

is presented in section 5

2. Mathematical Model

We consider the boundary layer flow of an electrically conducting nanofluid along with an impermeable stretching cylinder. In

general, to model the (MHD) flow of the nanofluid, double stratification and thermal radiation effects are considered. In this

section, we will focus on Hayat et al’s discussion of the (MHD) flow of the nanofluid, which considers an impermeable stretching

cylinder. [17] (Fig.1):

Figure 1. Physical model of the problem

For incompressible fluids, the law of conservation of mass is as follows:

∂(ru)

∂r
+
∂(rw)

∂z
= 0, (1)

A system’s linear momentum is conserved according to the law of conservation of momentum. According to Newton’s second

law, this law is as follows:

u
∂w

∂r
+ w

∂w

∂z
= ν

(
∂2w

∂r 2
+

1

r

∂w

∂r

)
− σB20

ρ
w, (2)

Comput. Math. Comput. Model. Appl. 2022, Vol. 1, Iss. 2, pp. 104–121 Copyright c⃝ 2022 Shahid Beheshti University. 105



Computational Mathematics and Computer Modeling with Applications A. Pakniyat

The momentum equation involves three types of forces. In this problem, the left-hand term represents inertial force, the right-

hand term represents surface force, and the second term represents body force. According to the law of conservation of energy,

the total energy in a system is conserved. As a result, this law is derived from the first law of thermodynamics, which states

u
∂T

∂r
+ w

∂T

∂z
= α

(
∂2T

∂r 2
+

1

r

∂T
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)
+ τ

(
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+
DT
T∞

(
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)2)

+
16

3
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(ρC)f k∗

(
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∂r 2
+

1

r

∂T

∂r

)
, (3)

On the left side, there are terms representing the internal energy, while on the right side, there are terms representing the heat

flux (diffusion). On the left side, there are terms reflecting Brownian motion and thermophoretic phenomena, while on the right

side, there are terms representing thermal radiation

u
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)
, (4)

Accordingly, the boundary conditions to the magnetohydrodynamic flow of nanofluid are

w = ww (z) + L
∂w

∂r
, u = 0, T = Tw (z) +K1

∂T

∂r
, C = Cw (z) +K2

∂C

∂r
at r = R1,

w → 0, T → T∞(z), C → C∞(z) as r →∞, (5)

ww (z) =
U0z

l
, Tw (z) = T0 + a

(z
l

)
, Cw (z) = C0 + b

(z
l

)
, T∞(z) = T0 + d

(z
l

)
,

C∞(z) = C0 + e
(z
l

)
, α =

k

(ρCp)f
, τ =

(ρCp)p
(ρCp)f

, υ =
¯

ρf
.

Here, u and w are the velocity components along the radial and axial directions, In Table1 lists the variables.

Table 1. The nomenclature of chemical compounds for model [17]

u, v Velocity components L,K1andK2 Velocity,Thermal and Concentration slip factors

C Concentration T Temperature

υ Kinematic viscosity σ Electrical conductivity

ρ Density α Thermal diffusivity

DB Brownian diffusion coefficient DT Thermophoresis diffusion coefficient

(ρCp)f Heat capacity of fluid (ρCp)p Heat capacity of nanopaticle

ρf Density k Thermal concentration

k∗ Mean absorption coefficient ww (z) Stretching velocity

U0 Reference velocity l Reference length

Tw (z) Temperature over the surface T∞(z) Temperature for away from the surface

T0 Reference temperature Cw (z) Concentration over the surface

C∞(z) Ambient concentration C0 Reference concentration

a, b, d and e Dimensional constants

After applying the transformation shown below, Equation 1 is satisfied

η =
√
U0
v l

(
r2−R21
2R1

), w = U0z
l
f ′(η),

u = −
√
υU0
l

R21
r
f (η), θ(η) = T−T∞

Tw−T∞ , ϕ(η) = C−C∞
Cw−C0

.
(6)

By using Equations (2- 5) is identically satisfied and boundary conditions, the (MHD) flow of nanofluid becomes [17]
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(1 + 2γη)f ′′′ + 2γf ′′ + f f ′′ − f ′2 −M2f ′ = 0, (7)

(1 + 2γη)(1 +
4

3
R)θ′′ + 2γ(1 +

4

3
R)θ′ + Pr(f θ′ − f ′θ − Sf ′) + (1 + 2γη)PrNbθ′ϕ′

+(1 + 2γη)PrNtθ2 = 0, (8)

(1 + 2γη)ϕ′′ + 2γϕ′ + Le(f ϕ′ − f ′ϕ− P f ′) +
Nt

Nb
(1 + 2γη)θ′′ + 2γ

Nt

Nb
θ′ = 0, (9)

f ′(0) = 1 + Af ′′(0), f (0) = 0, θ(0) = 1− S + B`′(0), Œ(0) = 1− P + B1Œ
′(0),

f ′(∞) = 0, θ(∞) = 0, ϕ(∞) = 0. (10)

In which γ is the curvature parameter, M is the magnetic parameter, R is the radiation parameter, Nb is the Brownian motion

parameter, Nt is the thermophoresis parameter, Pris the Prandtl number, Le is the Lewis number, S is the thermal stratification

parameter, P is the solutal stratification parameter, A is the velocity slip parameter, B is the thermal slip parameter, and B1is

the solutal slip parameter [17], This parameter has the following values

γ =

(
v l

U0R21

)2
, M =

√
σl
ρU0

B0, R =
4σ∗T∞
k∗k

,

Nb =
(ρCρ)ρDB(Cw−C0)

(ρCρ)f v
,

Nt =
(ρCρ)ρDT (Tw−T0)
(ρCρ)f vT∞

, (11)

P r =
µ(Cρ)f
k

, Le = v
DB
, S =

d

a
,

P =
e

b
, A = L

√
U0
v l
, B = K1

√
U0
v l
,

B1 = K2

√
U0
v l
.

In 2002, Andresson by using the exact analytical solution for the slip-flow of a Newtonian fluid past problem [3]. Mahmoud

applied the fourth-order Runge-Kutta method to solve visco-elastic fluid [24]. Mahmoud et al. [25] presented the Chebyshev

spectral methods for MHD flow and heat transfer of a micropolar fluid over a stretching surface with heat generation and slip

velocity. Parand et al. [53] applied the spectral method to solve the visco-flow problem. The homotopy analysis method for the

solution of Equation (7-9) is employed to obtain by Hayat et. al [17]. Daniel et. al examined the solution to this problem by

entropy analysis [9].

3. Methodology

The objective of this section is to demonstrate the application of the proposed method in solving a problem related to nanofluids.

By presenting the results of our solution and analyzing its effectiveness, we establish the potential of our method in solving similar

problems in this field of study.

3.1. Hermite Functions

In this section, we apply the properties of the Hermite functions. First, we introduce the Hermite functions and explain why Usage

of Hermite polynomials to solve differential equations at infinite distances is generally not suitable. To solve this problem, we

use the collocation method based on Hermite functions. Unlike the Hermite polynomials, the Hermite functions are well-behaved

due to their decay property. . The Hermite functions are defined as [45, 57]

H̃n =
1

√
2nn!

e
−x2
2 Hn(x), n ≥ 0, x ∈ R, (12)

where,
{
H̃n

}
is an orthogonal system in complete in L2(R), inner product of the space L2(R)∫ +∞

−∞
H̃n(x)H̃m(x)dx =

√
πδnm, (13)
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which, n ≥ 1, δnm is the Kronecker delta function. One of the essential features of Hermite functions is the recurrence relationship

of three-term

H̃n+1(x) = x

√
2

n + 1
H̃n −

√
n

n + 1
H̃n−1(x), n ≥ 1,

H̃0(x) = e−x
2/2, H̃1(x) =

√
2xe−x

2/2, (14)

The following equation can be obtained using the above formula and the Hermite polynomial recurrent relation [57]

H̃′n(x) =
√

2nH̃n−1(x)− xH̃n(x) =

√
n

2
H̃n−1(x)−

√
n + 1

2
H̃n+1(x), (15)

and the following is also an orthogonal relationship for deriving Hermit functions [57]

∫ +∞
−∞

H̃′n(x)H̃′m(x)dx =


−
√
nπ(n−1)
2

, m = n − 2,

(n + 1
2

)
√
π, m = n,

−−
√
π(n+1)(n+2)

2
, m = n + 2,

0, Otherwise.

(16)

The Hermite polynomials are defined as the function of the weight function w(x) = e−x
2
at the domains (−∞,+∞)

P̃N =
{
u : u = e−x

2/2v, ∀v ∈ PN
}
, (17)

where PN is the set of all Hermite polynomials of the degree at most N. We introduce the Guass quadrature associated with

the Hermite functions approach. Let {xj}Nj=0 are the Gauss-Hermite points and define the weights as follows :[57]

w̃j =

√
π

(N + 1)H̃2N(xj)
, 0 ≤ j ≤ N. (18)

Then we have

∫ +∞
−∞

p(x)dx =

N∑
j=0

p(xj)w̃j , ∀p ∈ P̃2N+1. (19)

For solving the (MHD) flow of nanofluid problem, we use mapping because the Hermite functions are in infinite domains

(−∞,+∞). Here, the goal is to create a fractional Hermite function transferred to the semi-infinite domains. In general, the

fractional form of Hermite functions is obtained by changing the variable of the form x = tα α > 0. The F H̃n(t) a symbol is

used to display it. Then we have

F H̃n(t) = H̃n(t
α) 0 ≤ t <∞, (20)

or

F H̃n =
1√

2nn!
e
−( 1
k
ln(tα))2

2 Hn(
1

k
ln(tα)), n ≥ 0, t ∈ [0,∞), (21)

which

F H̃0(t) = e
−( 1
k
ln(tα))2

2 . (22)

For the fractional order of the Hermite functions transferred to the semi-infinite domains, the recursive relationship will be as

follows:

F H̃n+1(t) = 1
k

ln(tα)
√

2
n+1F H̃n(t)−

√
n
n+1F H̃n−1(t), n ≥ 1,

F H̃0(t) = e
−( 1
k
ln(tα))2

2 F H̃0(t) =
√

2 1
k

ln(tα)e
−( 1
k
ln(tα))2

2 . (23)

The Hermite functions in the infinite domain are orthogonal to the weight function w(x) = 1
x

in the [0,+∞) interval. Therefore,

the Hermite functions transferred from the fraction order in the semi-infinite domain are orthogonal to the weight function

w(t) = 1
t
. The orthogonal relationship is as follows:
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< FH̃n(t), F H̃m(t) >w(t)=
√
πδnm. (24)

Fractional order transmitted Hermite functions F H̃n(t) have n distinct real roots in an semi-infinite domain [0,+∞). Therefore,

to obtain the zeros of the transferred Hermite functions, we have the inverse image fraction of the points of the space {xj}
xj=+∞
xj=−∞as

follows:

Γ = {ϕ−1(p) ∈ DE : −∞ < p <∞} = (0,+∞). (25)

We have a fraction for the transferred Hermite functions:

t̃j = ϕ−1(xj) = (ekxj )
1
α , j = 0, 1, 2, ... . (26)

3.2. Support Vector Machine

We have training sets D, including the N points defined below

D = {(xi , yi)| xi ∈ Rn, yi ∈ R, n = 1}Ni=1, (27)

xi ∈ Rn is the ith input data and yi ∈ R is the ith output data. The goal is to find the separating hyperplane with the most

considerable distance from the margin. Each hyperplane can be written as follows:

y(x) = wTφ(x) + b, (28)

where w is the weight vector, b is bias term and φ(x) is a nonlinear function which is used to transform the nonlinear

input data into a higher-dimensional space. Another method for solving these problems, the primal LS-SVR model as

follows:[16, 23, 27, 33, 58] that it is an optimization problem

min
w,b,e

1

2
wTw +

λ

2
eT e,

sbject to yi = wTφ(xi) + b + ei , i = 1, ..., N, (29)

where λ ∈ R+. Instead of [29], we can easily use the dual model that obtains after the Lagrangian multipliers and conditions for

optimal (KKT conditions) will be as follows [5, 23, 30, 33, 36, 37][
M + 1

λ
IN 1N

1TN 0

] [
α

b

]
=

[
y

0

]
, (30)

here, M is kernel matrix that calculated by Mi,j = < φ(x), φ(y) >= k(x, y), Section 3.3 briefly describes it. 1N = [1, ..., 1]T ∈
RN, α = [α1, ..., αN ]T , y = [y1, ..., yN ]T . IN is an N × N identity matrix. Applying KKT conditions for the primal model and its

derivative from e, w and equalizing it to zero, it will eliminate these .Because of this feature, in infinite-dimensional, kernel trick

is used to solve the problem. The corresponding dual model illustration is y(x) =
∑N
i=1 αik(x, y) + b [30]. When dimensional is

high, solving the problem with the dual model is more satisfied. The kernel functions plays a role in the higher dimensional space.

We have shown that the following differential operators, which are used to solve the problem in the next section that they are

the derivative of the kernel function. [5, 27, 33]

∇mn ≡
∂n+m

∂xn∂my
, (31)

[φ(n)(x)].φ(m)(y) = ∇mn [φ(x), φ(y)] = ∇mn [k(x, y)] =
∂n+mk(x, y)

∂xn∂my
, (32)

for instance, we have given here some example

∇01[k(x, y)] = φ(1)(x).φ(0)(y), ∇10[k(x, y)] = φ(0)(x).φ(1)(y),

∇02[k(x, y)] = φ(2)(x).φ(0)(y), ∇02[k(x, y)] = φ(0)(x).φ(2)(y),

∇03[k(x, y)] = φ(3)(x).φ(0)(y), ∇30[k(x, y)] = φ(0)(x).φ(3)(y). (33)

Therefore, the proposed LS-SVR algorithm for solving differential equations is represented in 1.
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Algorithm 1 The general LS-SVR algorithm for sloving the differential equation

1. Get values of boundary/ initial values and set parameter of LS-SVR (λ)

2. Perform differential equation

3. LS-SVR model

(a) Input: ode differential equations (First, the non-linear equation becomes a linear equation)

(b) Output: compute the weight vector

i. for i = 1 to N do

ii. The LS-SVR model can be given by y(x) =
∑N
i=1 αik(x, y) + b

iii. Set kernel function (fractional Hermite functions) and their parameters

iv. end for

(c) Train model with the LS-SVR model and then evaluate with this model

In Figure 2 represented simple computational steps of LS-SVR with inputs [1]. In Sections (3.2,3.3 and 3.5) deal with this

issue in more detailed information.

Figure 2. Mathematical model of LS-SVR for n = 4

In this figure, xi , y showed inputs and output respectively, and k(x, y) is kernel trick that in this paper, fractional Hermite

functions have been selected.

3.3. Kernel Functions

The kernel matrix k is calculated k(x, y) =< φ(x), φ(y) >, x, y are n-dimensional inputs. φ is the map from n-dimensional to

m-dimensional space. < x, y > denotes the dot product. Kernel trick makes it possible to get the same results, even with every

high degree polynomials, without actually having to add them. Support vector machines also work for non-linear problems by

using the kernel trick. This method helps linear learning algorithm to learn a non-linear function which determines the decision

boundary. The SVM kernel is a function that takes low dimensional input space and transforms it to a higher dimensional space.

It is the ultimate benefit of non-linear separation problems. Our kernel functions in this paper are Hermite functions that are

included Mercer’s condition [30, 32, 63], then used instead of linear algorithms in high-dimensional problems. Here, employing

Hermite functions becomes well-conditions and good performance and avoid over-fitting. The Mercer’s conditions is as follow∫ ∫
Ω

k(x, y)g(x)g(y)dxdy ≥ 0, ∀g ∈ L2,Ω ⊆ R. (34)

If the kernel functions have the Mercer’s conditions, the kernel used will be satisfied. So, it can represent the Hermite functions

as follows: [2, 45, 57]

k(x, y) =

m∑
i=0

Hi(x)Hi(y), (35)

where the Hermite functions Hn is orthogonal and positive definite kernel [30], we have elaborated the properties of Hermite

functions in the Section (3.1) that the Mercer’s theorem holds for the Hermite functions for vector spaces.

3.4. Quasilinearization Method

A compelling approximation technique for solving nonlinear differential equations is the quasilinearization method. (QLM). This

procedure is repeated until a rapid, and often uniform convergence is achieved. Bellman and Kalaba introduced the Newton-

Raphson method for solving one or a set of ordinary and partial differential equations [6]. In this method, the nonlinear differential
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equation becomes a sequence of linear differential equations, and the solution of this sequence of linear differential equations is

uniformly converged to the solution of the desired nonlinear differential equation. This method has been used by many researchers

[45, 54, 56]. This method requires an initial guess, which is usually selected based on the initial conditions and the physical and

mathematical properties of the problem [40, 45]. To know how it works, imagine that we have a simple differential equation as

[45]

y ′′(x) = f (y), y(0) = y(b) = 0, (36)

y0(x) is an initial approximation of the solution. Consider the {yr} sequence as follows:

y ′′r+1 = f (yr ) + (yr+1 − yr )fy (yr ), yr+1(0) = yr+1(b) = 0. (37)

Nonlinear differential equations with the following ordinary derivatives are available in the intervals [0, b]

L(n)y(x) = f (y(x), y (1)(x), ..., y (n−1)(x), x), (38)

with n boundary condition

gk(y(0), y (1)(0), ..., y (n−1)(0)) = 0, k = 1, ..., l ,

gk(y(b), y (1)(b), ..., y (n−1)(b)) = 0, k = l + 1, ..., n. (39)

L is a regular linear differential operator of order n, and f , g1, g2, ..., gn are the nonlinear functions of y(x) and be its derivatives.

The value of b can be infinite. yr+1(x) is the solution to the following linear differential equation that is presented as the response

to the nonlinear differential equation (38):

Lnyr+1(x) = f (yr (x), y (1)r (x), ..., y (n−1)r (x), x)

+

n−1∑
s=0

(y
(s)
r+1(x)− y (s)r (x))fy (s)(yr (x), y (1)r (x), ..., y (n−1)r (x), x), (40)

where y
(0)
r (x) = yr (x) and linear boundary conditions

n−1∑
s=0

(y
(s)
r+1(0)− y (s)r (0))gky (s)(yr (0), y (1)r (0), ..., y (n−1)r (0), 0), k = 1, ..., l ,

n−1∑
s=0

(y
(s)
r+1(b)− y (s)r (b))gky (s)(yr (b), y (1)r (b), ..., y (n−1)r (b), b), k = l , ..., n + 1, (41)

where fy (s) and gky (s) functions are derivatives of the following functions, respectively

f (yr (x), y (1)r (x), ..., y (n−1)r (x), x),

gk(yr (x), y (1)r (x), ..., y (n−1)r (x), x). (42)

3.5. Application of the Method

For solving the (MHD) flow of nanofluid problem, we are used QLM and LS-SVR methods based on fractional Hermite functions.

Using the QLM, the Equations (7-8) that non-linear equations make linear sequence equations. Accordingly, the solution of the

equations ( 7-8) is the (n + 1) iterative approximation of the following linear differential equations.

d3f n+1
dȷ3

= F (f ′′n , f
′
n , fn, η) + (fn+1 − fn)

∂F

∂fn
(f ′′n , f

′
n , fn, η) + (f ′n+1 − f ′n)

∂F

∂f ′n
(f ′′n , f

′
n , fn, η)

+ (f ′′n+1 − f ′′n )
∂F

∂f ′′n
(f ′′n , f

′
n , fn, η), (43)

d2`n+1
dȷ2

= Θ(θ′n, θn, η) + (θn+1 − θn)
∂Θ

∂θn
(θ′n, θn, η) + (θ′n+1 − θ′n)

∂Θ

∂θ′n
(θ′n, θn, η), (44)

we can be calculated with the boundary conditions (10). We consider the initial guesses (f0, θ0, ϕ0)[17] for the QLM method,

which satisfying in the boundary condition.
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f0(η) =
1

1 + A
(1− exp(−βη)), θ0(η) =

1− S

1 + B
exp(−κη), ϕ0(η) =

1− P

1 + B1
exp(−ϖη), (45)

and β, κ and ϖ are constants. In this paper, we have used the fractional Hermite roots in the interval [0,+∞) that are a set

of training points, we have

y(x) = wTφ(x) + b, (46)

where, is the approximate solution for Equations (43-44-9) that w, b are the optimal values of model are obtained by solving

the optimization problem. Firstly, we expand f (η), θ(η) and Œ(ȷ) as follows:

ξN f (η) =

N−1∑
j=0

w1j φ̃j(η), ξNθ(η) =

N−1∑
j=0

w2j φ̃j(η), ξNϕ(η) =

N−1∑
j=0

w3j φ̃j(η), (47)

where w1j , w2j and w3j , j = 0...N − 1 are unknown coefficients, φj , j = 0...N − 1 are transformed fractional Hermite functions

and the N are collocation points. In Section (3.1), we defined an orthogonal projection based on the transformed fractional

Hermite functions. The ξN : L2(Γ)→ H̃N is a mapping in a way that for any y ∈ L2(Γ), the L2(Γ) is the orthogonal projection,

will have

< ξNy − y, ϕ >= 0, ∀ϕ ∈ H̃N , (48)

or equivalently,

ξNy(η) =

N−1∑
j=0

wj H̃j(η). (49)

Thus, we have

ξ̃ψ1(η) = f0(η) + ξN f (η), ξ̃ψ2(η) = θ0(η) + ξNθ(η), ξ̃ψ3(η) = ϕ0(η) + ξNϕ(η) (50)

We can substitute ξ̃ψ1(η), ξ̃ψ2(η) and ξ̃ψ3(η) into Equations (43,44,9) and we construct the residual functions by finding the

solution of the following optimization problem

min
w,b,e

1

2
wTw +

λ

2
eT e,

subject to wTφ(M)(ηi) +

M−1∑
k=1

wT rk(ηi)φ
(k)(ηi) = ei , i = 2...N,

wTφ(η1) + b = p0, (51)

here, rk(η) is a specified function and (M) represents a nonlinear ordinary differential equation of a given order. To further our

analysis, we introduce residual functions Res1(η), Res2(η), and Res3(η), which are defined by the following equations:

Res1(η) = −
d3( 1)n+1

dȷ3
+ F ((ψ′′1)n, (ψ′1)n, (ψ1)n, η) + ((ψ1)n+1 − (ψ1)n)

∂F

∂(ψ1)n
((ψ′′1)n, (ψ′1)n, (ψ1)n, η)

+((ψ′1)n+1 − (ψ′1)n)
∂F

∂(ψ′1)n
((ψ′′1)n, (ψ′1)n, (ψ1)n, η) + ((ψ′′1)n+1 − (ψ′′1)n)

∂F

∂(ψ′′1)n
((ψ′′1)n, (ψ′1)n, (ψ1)n, η), (52)

where

F ((ψ′′1)n, ((ψ′1)n, (ψ1)n, η) = (1 + 2γη)(ψ′′′1 )n + 2γ(ψ′′1)n + f (ψ′′1)n − ((ψ′1)n)
2 −M2(ψ′1)n, (53)

by employing the roots of transformed Hermite functions at collocation points N, represented by η in Equation (7), we can

utilize the QLM method to generate n + 1 linear differential equations.

Res2(η) = −
d2( 2 )n+1

dȷ2
+ Θ((ψ′2)n, (ψ2)n, η) + ((ψ2)n+1 − (ψ2)n)

∂Θ

∂(ψ2)n
((ψ′2)n, (ψ2)n, η)

+(θ′n+1 − θ′n)
∂Θ

∂(ψ′2)n
((ψ′2)n, (ψ2)n, η), (54)

where
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Θ((ψ′2)n, (ψ2)n, η) = (1 + 2γη)(1 +
4

3
R)(ψ′′2)n + 2γ(1 +

4

3
R)(ψ′2)n + Pr((ψ1)n(ψ

′
2)n − (ψ′1)n(ψ2)n − S(ψ′1)n)

+(1 + 2γη)PrNb(ψ′2)nψ
′
3 + (1 + 2γη)PrNt((ψ2)n)

2, (55)

equation (54) provides n + 1 linear equations that can be obtained using the QLM method. Res2 is formed by utilizing the roots

of transformed Hermite functions.

Res3(η) = (1 + 2γη)ψ′′3 + 2γψ′3 + Le((ψ1)nψ
′
3 − (ψ′1)nψ3 − P (ψ′1)n) +

Nt

Nb
(1 + 2γη)(ψ′2)n + 2γ

Nt

Nb
(ψ′2)n. (56)

The obtained placement fnew from Equation (52) is used to solve a set of equations in the QLM method by replacing it in

Equations (54-56). The QLM method is utilized to obtain θnew , which is then substituted in Equation (56). Finally, a quadratic

programming problem is solved to find the unknown coefficients for all of these equations. In this paper, the dual model is used

to solve the quadratic programming problem. Thus, we can re-write Equations (51) in the following form:

min
w,b,e

1

2
wTw +

λ

2
eT e,

wT1 ψ
′′′
1 (ηi) +

3∑
k=1

Res1k(ηi) = ei , i = 2...N1, wT1 ψ1(η1) + b1 = p0,

wT2 ψ
′′
2(ηi) +

2∑
k=1

Res2k(ηi) = ei , i = 2...N2, wT2 ψ2(η1) + b2 = q0,

wT3 ψ
′′
3(ηi) +

2∑
k=1

Res3k(ηi) = ei , i = 2...N3 wT3 ψ3(η1) + b3 = u0, (57)

Here, ψ1, ;ψ2; and;ψ3 represent the transformed fractional Hermite functions, and the parameter value λ ∈ R+. By substituting

Equations (57), the following dual form can be computed:

min
1

2
αTHα− 1Tα, (58)

subject to
∑
i

ffiyi = 0, ffi ≥ 0. (59)

The Lagrangian of the optimization problem is constructed by substituting Equations (57) into the following function:

L(w1, αi , ei) =
1

2
wT1 w1 +

λ

2
eT e +

N1∑
i=2

αi

[
wT1 ψ

′′′
1 (ηi) +

3∑
k=1

Res1k(ηi) + p0 − ei

]
, (60)

L(w2, βi , ξi) =
1

2
wT2 w2 +

λ

2
ξT ξ +

N2∑
i=2

βi

[
wT2 ψ

′′
2(ηi) +

2∑
k=1

Res2k(ηi) + q0 − ξi

]
, (61)

L(w3, γi , ϑi) =
1

2
wT3 w3 +

λ

2
ϑTϑ+

N3∑
i=2

γi

[
wT3 ψ

′′
3(ηi) +

2∑
k=1

Res3k(ηi) + u0 − ϑi

]
, (62)

The weight vectors (unknown coefficients) are denoted by w1, ;w2; and;w3, and the Lagrange multipliers are represented by

αi , ;βi , ; and; γi i = 2...N, where N = [N1, N2, N3]. Furthermore, slack variables such as e, ; ξ; and ;ϑ are also included. The

Karush-Kuhn-Tucker (KKT) conditions are employed for Equations (60-62) to compute the partial derivatives, resulting in the

following equations:

∂L
∂w1

= 0⇒ w1 =

N1∑
i=2

αi

[
ψ′′′1 (ηi) +

3∑
k=1

Res1k(ηi)

]
,

∂L
∂αi

= 0⇒ wT1 ψ
′′′
1 (ηi) +

3∑
k=1

Res1k(ηi) + p0 − ei , i = 2, ..N, (63)

∂L
∂ei

= 0⇒ αi + Cei = 0, i = 2, ..N.
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In the following, we apply the kernel trick, eliminate w1; and; e from Equation (63), and write the solution using Mercer’s

condition. The resulting equation can be expressed as follows:

(
0 1TN

1N K+ I
λ

)−1(
b

α

)
=

(
y

p0

)
, (64)

where

∂L
∂w2

= 0⇒ w2 =

N2∑
i=2

βi

[
ψ′′2(ηi) +

2∑
k=1

Res2k(ηi)

]
,

∂L
∂βi

= 0⇒ wT2 ψ
′′
2(ηi) +

2∑
k=1

Res2k(ηi) + q0 − ξi , i = 2, ..N, (65)

∂L
∂ξi

= 0⇒ βi + Cξi = 0, i = 2, ..N,

In the same way, w2 and ξ eliminating and applying the kernel trick.

∂L
∂w3

= 0⇒ w3 =

N3∑
i=2

γi

[
ψ′′3(ηi) +

2∑
k=1

Res3k(ηi)

]
,

∂L
∂γi

= 0⇒ wT3 ψ
′′
3(ηi) +

2∑
k=1

Res3k(ηi) + u0 − ϑi , i = 2, ..N, (66)

∂L
∂ϑi

= 0⇒ γi + Cϑi = 0, i = 2, ..N.

We eliminated w3; and;ϑ by utilizing the kernel trick with Mercer’s condition in the dual form. To obtain the solution using LS-

SVR, we applied the fractional Hermite function as the kernel trick, and its corresponding dual form representation is presented

below.

ŷ1 =

N1∑
i=2

αi

([
∇03K

]
(ηi , η)−

3∑
k=1

Res1k(ηj)
[
∇03−kK

]
(ηi , η)

)
, (67)

ŷ2 =

N2∑
i=2

βi

([
∇02K

]
(ηi , η)−

2∑
k=1

Res2k(ηj)
[
∇02−kK

]
(ηi , η)

)
, (68)

ŷ3 =

N3∑
i=2

γi

([
∇02K

]
(ηi , η)−

2∑
k=1

Res3k(ηj)
[
∇02−kK

]
(ηi , η)

)
. (69)

The dual form can be used to solve Res1(η) with fractional Hermite functions as basis functions and obtain the w1 coefficients

by employing N1 collocation points. The number of interpolated nodes in Res2(η) and Res3(η) is denoted by N2 and N3
respectively. The solution to Res1(η) provides ŷ1, which is then applied to Equations (68,69) to obtain w2 and w3 coefficients.

These unknown coefficients are simultaneously obtained by solving the equations through the substitution of the previously

acquired w1. Algorithm 2 summarizes this method.
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Algorithm 2 Estimation of the proposed LS-SVM method for solving (MHD) equation

Input: Initial values, number of collocation points, number of repetitions, regularization parameter λ, pick nominal values for this

model

output: ŷ

1. Using fractional Hermite functions as bias function

2. Transformed fractional Hermite functions in interval [0,+∞)

for i = 1 to N do

for i = 1 to nlgm do

• Applying QLM method for the nonlinear differential equation becomes a sequence of linear differential equations

(a) Imposing the boundary conditions

(b) The initial guesses which satisfying in the boundary condition

end for

(a) The approximate solution y(x) = wTφ(x) + b

i. Select the kernel function k and set its parameters (using Mercer’s condition)

ii. Compute the kernel matrix Ω

(b) Construct the residual functions of the set of linear differential equations by finding the solution of the following

optimization problem

i. Obtain model parameter (α) by Lagrange multipliers and applying KKT conditions

ii. Using the dual model for solving the quadratic programming, y(x) =
∑N
i=1 αik(x, y) + b

iii. Estimate ŷ

end for

4. Numerical results

This section discusses the results of our study on using the LS-SVR method with fractional Hermite functions to solve the

(MHD) flow of nanofluid problem. In our implementation, we employed fractional Hermite functions with α = 1/2 as basis

functions.

We present numerical results for various parameters including the velocity, temperature, and concentration to confirm the

convergence of the LS-SVR method. Figure 3 illustrates the effect of the velocity slip parameter A on f ′(η), where an increase

in A leads to a reduction in f ′(η). Moreover, Figure 4 shows the impact of parameters S and B on the temperature profile θ(η).

Additionally, in Figure 5, we display the graphs of the approximation of ϕ(η) for different values of parameters B and P .

Finally, Tables (2-6) present the numerical solutions obtained. Our results demonstrate the accuracy and reliability of our

proposed approach in solving the (MHD) flow of nanofluid problem effectively.

Figure 3. f ′(η) for several values of A ( The left side), θ(η) for several values of S (The right side)
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Figure 4. θ(η) for several values of B (The left side), ϕ(η) for several values of B (The right side)

Figure 5. ϕ(η) for several values of P
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Table 2. Comparison of f ′(0) for various A between Andersson, Mahmoud, Mahmoud and Waheed, Hayat and the present

method when γ = 0, M = 0

f ′(0)

A Andersson [3] Mahmoud [24] Mahmoud and Waheed [25] Hayat [17] Present results β

0 1.0 1.0 1.0 1.0 1.0 1.0

0.1 0.9128 0.91279 0.91279 0.91279 0.9127900 1.004069

0.2 0.8447 0.84473 0.84472 0.84473 0.8447341 1.013681

0.5 0.7044 0.70440 0.70440 0.70440 0.7044000 1.0566

1.0 0.5698 0.56984 0.56982 0.56984 0.5698450 1.13969

2.0 0.4320 0.43204 0.43199 0.43204 0.4320433 1.29613

5.0 0.2758 0.27579 0.27579 0.27580 0.2756833 1.6541

10.0 0.1876 0.18758 0.18759 0.18781 0.1878182 2.066

20.0 0.1242 0.12423 0.12420 0.12456 0.1245638 2.61584

Table 3. Comparison of f ′′(0) for various A between Andersson, Mahmoud, Mahmoud and Waheed, Hayat and the present

method when γ = 0, M = 0

f ′′(0)

A Andersson [3] Mahmoud [24] Mahmud and Waheed [25] Hayat [17] Present results β

0 1.0 1.0 1.0 1.0 1.0 1.0

0.1 0.8721 0.87208 0.87209 0.872082 0.872081 0.9794334

0.2 0.7764 0.77637 0.77639 0.776377 0.776377 0.965222

0.5 0.5912 0.59119 0.59121 0.591195 0.591199 0.9417

1.0 0.4302 0.43016 0.43018 0.430159 0430158 0.927533

2.0 0.2840 0.28398 0.28400 0.283978 0.283975 0.922999

5.0 0.1448 0.14484 0.14481 0.144841 0.1448452 0.93224

10.0 0.0812 0.08124 0.08123 0.081242 0.8124252 0.94534

20.0 0.0438 0.04378 0.04381 0.043772 0.4377242 0.95876

Table 4. Comparison of f ′′(0) for various A, γ and M between Hayat and the present method

−f ′′(0)

γ M A Hayat [17] Present results β

0.0 0.2 0.1 0.9511 0.9511110 1.02285

0.5 1.1007 1.100740 1.10037

1.0 1.2337 1.233792 1.164977

0.1 0.0 0.9021 0.9021587 0.99618

0.5 1.0889 1.088928 1.09445

1.0 1.2391 1.239164 1.16751

0.2 0.0 1.1352 1.135226 1.06547

0.5 0.6554 0.6532681 0.9899

1.0 0.4724 0.4724254 0.72088
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Table 5. The comparison of (1 + 4R
3

)θ′(0) for different values for the present method and Hayat

(1 + 4R
3

)θ′(0)

γ M R Pr S Nb Nt P Le A B B1 Hayat [17] Present method β κ

0.0 0.2 0.1 1.4 0.1 0.1 0.1 0.1 1.9 0.1 0.1 0.1 0.9808 0.98084 1 1.0578

0.2 1.0343 1.0348 1 1.116

0.4 1.0855 1.0855 1 1.1707

0.1 0.0 1.0372 1.0376 1 1.119

0.2 1.0079 1.0079 1 1.08699

0.4 0.9823 0.98297 1 1.06010

0.2 0.0 0.9478 0.94745 1 1.15799

0.2 1.0631 1.0633 1 1.026010

0.4 1.1603 1.1608 1 1.28199

0.1 1.0 0.8422 0.84287 1 0.909

1.5 1.0442 1.0447 1 1.014

2.0 1.2034 1.2036 1 1.29799

1.4 0.0 1.0426 1.0428 1 1.0122

0.2 0.9732 0.97340 1 1.181

0.4 0.9035 0.90387 1 1.4622

0.1 0.2 0.9684 0.96804 1 1.044

0.4 0.8937 0.89387 1 0.964

0.6 0.8243 0.82432 1 0.889

0.1 0.0 1.0325 1.0323 1 1.67

0.2 0.9839 0.98349 1 1.591

0.4 0.9392 0.93898 1 1.519

0.1 0.0 1.0056 1.0057 1 1.627

0.2 1.0103 1.0138 1 1.64

0.4 1.0151 1.0150 1 1.642

0.1 1.5 1.0121 1.0125 1 1.638

2.0 1.0068 1.0064 1 1.628

2.5 1.0031 1.0033 1 1.623

1.9 0.0 1.0576 1.0571 1 1.71

0.2 0.9675 0.96742 1 1.565

0.4 0.9037 0.90375 1 1.462

0.1 0.0 1.1072 1.1070 1 1.628

0.2 0.9248 0.92421 1 1.631

0.4 0.7927 0.79275 1 1.6322

0.1 0.0 1.0041 1.0045 1 1.625

0.2 1.0108 1.0107 1 1.635

0.4 1.0149 1.0144 1 1.641
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Table 6. The comparison of ϕ′(0) for different values for the present method and Hayat

ϕ′(0)

γ M R Pr S Nb Nt P Le A B B1 Hayat [17] Present method β κ ϖ

0.0 0.2 0.1 1.4 0.1 0.1 0.1 0.1 1.9 0.1 0.1 0.1 0.7479 0.74945 1 1 0.916

0.2 0.8038 0.80345 1 1 0.982

0.4 0.8576 0.85909 1 1 1.05

0.1 0.0 0.8070 0.80754 1 1 0.987

0.2 0.7760 0.77645 1 1 0.949

0.4 0.7492 0.74921 1 1 0.9157

0.2 0.0 0.7403 0.74037 1 1 0.9049

0.2 0.8061 0.80615 1 1 0.9853

0.4 0.8541 0.85418 1 1 1.044

0.1 1.0 0.8618 0.86187 1 1 1.0534

1.5 0.7568 0.75682 1 1 0.925

2.0 0.66936 0.66934 1 1 0.81809

1.4 0.0 0.7705 0.77056 1 1 0.9418

0.2 0.7818 0.78185 1 1 0.9556

0.4 0.7936 0.79363 1 1 0.97

0.1 0.2 0.9994 0.99900 1 1 1.221

0.4 1.1103 1.1103 1 1 1.357

0.6 1.1466 1.1446 1 1 1.399

0.1 0.0 1.1976 1.1976 1 1 1.4637

0.1 0.7761 0.77613 1 1 0.9486

0.2 0.3822 0.38225 1 1 0.4672

0.1 0.0 0.0 0.8176 0.81764 1 1 0.8994

0.2 0.2 0.7347 0.73476 1 1 1.0103

0.4 0.6521 0.65214 1 1 1.1956

0.1 1.5 0.5954 0.59547 1 1 0.7278

2.0 0.8169 0.81695 1 1 0.9985

2.5 1.0010 1.0010 1 1 1.2235

1.9 0.0 0.8150 0.81507 1 1 0.9962

0.2 0.7443 0.74431 1 1 0.90971

0.4 0.6943 0.69431 1 1 0.8486

0.1 0.0 0.7360 0.73603 1 1 0.8996

0.2 0.8100 0.81000 1 1 0.99

0.4 0.8636 0.86367 1 1 1.0556

0.1 0.0 0.8886 0.88866 1 1 0.9874

0.2 0.6891 0.68918 1 1 0.9189

0.4 0.5627 0.56270 1 1 0.87531
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5. Conclusions

In this paper, we introduced a numerical solution for solving nonlinear problems using LS-SVR. Our proposed algorithm consists

of three key steps: selecting training points, quasilinearization, and utilizing fractional Hermite functions. First, we utilized

Hermite roots to generate the necessary training data. Next, we employed the quasilinearization method to linearize the MHD

flow problem. To improve the convergence of our solution via LS-SVR, we introduced fractional Hermite functions. Finally, we

compared the results obtained using our proposed method with those obtained using other methods. Our findings demonstrate

the effectiveness of this approach in solving nonlinear problems with high precision and efficiency.
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