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On two convex variational models and their
iterative solutions for selective segmentation
of images with intensity inhomogeneity

Liam Burrows?, Ke Chen? and Francesco Torella®

Treating images as functions and using variational calculus, mathematical imaging offers to design novel and continuous
methods, outperforming traditional methods based on matrices, for modelling real life tasks in image processing. Image
segmentation is one of such fundamental tasks as many application areas demand a reliable segmentation method.
Developing reliable selective segmentation algorithms is particularly important in relation to training data preparation
in modern machine learning as accurately isolating a specific object in an image with minimal user input is a valuable
tool. When an image’s intensity is consisted of mainly piecewise constants, convex models are available. Different from
previous works, this paper proposes two convex models that are capable of segmenting local features defined by geometric
constraints for images having intensity inhomogeneity. Our new, local, selective and convex variants are extended from
the non-convex Mumford-Shah model intended for global segmentation. They have fundamentally improved on previous
selective models that assume intensity of piecewise constants. Comparisons with related models are conducted to illustrate
the advantages of our new models. Copyright (© 2022 Shahid Beheshti University.

Keywords: Variational calculus; Inverse problems; Image segmentation; Mumford-Shah; Intensity inhomogene-
ity; Geometric constraints; Iterative methods.

1. Introduction

Image science is a relatively new research area, arising to tackle the emerging and increasingly challenging problems from the
rapidly developing imaging technology. As the number of image modalities increases, the level of difficulties and requirements
from sciences and engineering is constantly going up. To provide high quality of processed results, it is natural to build geometry
into models by treating images as functions rather than matrices and tensors, and using variational calculus rather than matrix
analysis (linear transforms and filtering). Lying in the heart of image sciences is mathematical imaging that offers to design novel
and continuous methods, called variational methods, for modelling real life tasks in image processing. See [39, 19] and many
references therein. Most problems in imaging are inverse problems due to uniqueness issues and hence use of regularization is
common.

Segmentation is one important imaging task that requires partitioning an image into segments in order to identify and
classify objects. Over the last few decades, variational segmentation methods have been well studied. Among them, the model
by Mumford and Shah (MS) [31] is the most famous and fundamental, aiming to approximate an input image by a piecewise-
smooth function. This model is difficult to solve exactly, and so many attempts to simplify or approximate it have been proposed,
with the simplification by the Chan and Vese (CV) model [17] thw most well-known. The CV method and variants of it make
the assumption of piecewise-constant intensities which limits the performance, particularly on complicated images. This paper
considers how to approximate the MS model without the assumption of piecewise-constant intensities and develops a variational
model that is convex and can segment one desirable feature only of a given image with intensity inhomogeneity.

An approximation of the MS model is by the two-stage method be Cai et al. [11], who proposed a convex variant of the
MS model. Critically their model is able to tackle images with non-constant intensities, and employs a so-called "smoothing
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and thresholding” (SaT) segmentation paradigm, in which a clean approximation is found in the first stage, and segmentation
is achieved by thresholding in a second stage. More investigation of SaT was discussed in [10], where the authors linked
the piecewise-constant MS model and the Rudin-Osher-Fatemi (ROF) denoising model [38], consolidating the connection
between segmentation and denoising models. Alberti, Bouchitte and Dal Maso [1] proposed another convex relaxation of the
MS functional. This is also intended for global segmentation.

Models explicitly addressing segmentation in the presence of intensity inhomogeneity have been studied, such as the model
by Li et al. [25] who introduced such local intensity information in the form of a region scaling fitting energy using the CV
framework. Another model based on local intensity clustering [27] assumes that the image contains a bias field causing the
inhomogeneity. The above two models are non-convex and hence are initialisation dependent. The local CV model by Wang et
al. [42] can deal with intensity inhomogeneity and is less sensitive to initialisation, but struggles in the presence of noise. The
challenge in these models is heavy dependence on the initialisation of the contour due to use of level sets or non-convexity.

In many practical applications, segmentation of all features or all homogeneous regions is first challenging and second
unnecessary. It can be more useful to segment a particular region or regions of interest only. This is known as selective
segmentation [18], and is the task of concern in this paper.

An easy way of obtaining a selective segmentation method is by starting initialisation (around a region of interest) or early
stopping of the optimisation in a non-convex model. For example, we may use the CV model (if intensity inhomogeneity is
not strong), or the more robust distance regularised level set evolution (DRLSE) model by Li et al. [26] (if there is intensity
inhomogeneity and weak noise). Equally one may use the edge based active contours method by Kass et al. [24] or Caselles et
al. [12] by suitable initialisation of contours. However, this use of such approaches is not robust.

An improvement can be made to enforce selectiveness directly by incorporating geometrical constraints into models. An early
such method was the edge-based approach by Gout et al. [23] and, to improve the model to deal with noisy images, Badshah and
Chen [5] combined this edge based idea with the CV fidelity. Further refinements include imposing area constraints to prevent
the evolving contour from growing too much and adding different and improved distance penalties [35, 41, 36, 9].

There are recent works attempting to extend the above selective models to images of non-piecewise constant intensity. The
works by Ali et al. [2] and Mabood et al. [29] have tackled intensity inhomogeneity in selective models. Their idea is to transform
the input image to new images that are better approximated by fidelity fitting of intensities with piece-wise constant [2] or linear
distribution [29]. Owning to non-convexity, unless a good initialisation is provided, these models may get stuck in unwanted local
minima, and hence are not robust. The model by Liu et al. [28] applied geometrical constraints to the SaT paradigm, but their
model is not yet robust due to requiring too many markers.

The key observations motivating this work are: (i) the above mentioned selective methods, due to many using the CV fidelity
(with the assumption of a piecewise-constant distribution), are not adequate for segmenting real images. (ii) a non-convex
model is too strongly dependent of initialisation. In this paper, we overcoming these two problems by proposing two selective and
convex segmentation models to tackle intensity inhomogeneity in the MS framework (instead of the CV type) and to segment
selectively one feature of the image requiring few markers.

The rest of this paper is organised as follows: In §2 with review the relevant segmentation literature. In §3 we introduce
the proposed selective models based on convex variants of the MS model, give some simple theories and detail their numerical
solution methods. In §4 we show numerical experiments demonstrating the advantages of our proposed models. Finally in §5 we
draw a conclusion.

2. Related works

In this section we review some related literature. We first look at the Mumford-Shah model and convex variants of it. Then we
review some recent selective segmentation models, followed by models suited to segmenting images displaying inhomogeneity.
Throughout this paper, we denote an input image as z, defined over a rectangular image domain Q C R?. Extension to 3D is
immediate.

Features in an image present themselves by way of sudden changes in gradients Vz that are called jumps. If Vz is slowly and
smoothly varying, there are no edges or features to detect when z must appear blurry. This is where imaging science or vision
science prefers ‘discontinuous’ to continuous and differentiable functions for best visual effects or differs from other non-visual
sciences.

The aim of global segmentation is to decompose z in the entire domain Q2 into K subregions 2;, i =1, ..., K, with a
discontinuity set ' (where large jumps in Vz occur) separating these subregions, denoted as Q =, U2 U ... UQxUT, or
equivalently to find the edges I'. Given a set M = {x; € 2,1 < i < m} of marker points x; placed on 2, the aim of selective
segmentation is to identify some local image region 2a¢ that is defines an interested object nearest to the set M.
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2.1. Image Global Segmentation by Mumford-Shah

For global segmentation, the MS model [31] aims to decompose the image domain € into K subregions Q;, i = 1, ..., K, with a
discontinuity set I separating these subregions, such that Q = Q; U QU ... UQk UT. The MS model minimises the functional:

Fus(u,T) = %/Q(Z — u)2 dx + /Q\I' |Vu|2 dx + qu(r), (1)

where u: Q — R? is a piecewise-smooth approximation of the input (potentially noisy with Gaussian noise) image z : 2 — R?
and H*(I") is the Hausdorff measure (length of I'). Here the first term is for denoising (in case z has noise) and simply states
that the new and clean image u should be near the given image z; the second term is the main term for locating the jumps of
Vz and the third term is to ensure solvability i.e. only boundaries having the least length are eligible. Clearly (1) is non-convex.

A key concept used widely is called a level set function that represents the purely geometric quantity of length (or area or
volume) of a subregion by a function, in order to facilitate analysis and computation ([40]). A level set function is associated
with the idea of 'lifting’ where a ‘difficulty’ in low dimension is represented by an ‘easy’ quantity in a high dimension.

Since it is challenging to compute the last two terms of (1), many attempts have been taken to approximate (1). A well-known
approach by Ambrosio and Tortorelli [3, 4] aimed to approximate (1) by a sequence of elliptic variational problems by replacing
the edge set I with a 2D function and replacing the final term in (1) with a phase field energy. The modified model is only
quasi-convex, not convex. Non-local approximations, in which a family of continuous, non-decreasing functions are used to avoid
the explicit computation of the edge set I' can be found in [22, 14]. The CV model by [17] simplifies (1) by restricting u to a
piecewise-constant intensity distribution, has been intensively studied in the literature but will not be reviewed here. Instead, we
focus on how to solve (1) by reformulating it to a convex model.

The more recent work by Cai et al. [11] is a two-stage approach for segmentation. In the first stage a convex variant of the
MS model is minimised, and thresholding is applied in stage two to achieve segmentation. Using u to approximate the Heaviside
of the above-mentioned level set function (in a relaxation approach), the key observation was that the term [ |V u)?dx appearing
in (1) is 0 if u € W"?(2); hence the second term of MS becomes fQ\r |Vul?dx = [, |Vul|*dx. Their proposed model is given as:

Fe(u) = g/ﬁ(z—u)zdx—&—%/Q|Vu|2dx+/Q\Vu|dx, ()

where the smooth approximation u is constrained to be in the Sobolev space WI*Q(Q), and the total variation is used to
approximate H*(I"), inspired by [16]. The second-stage of their approach involves thresholding the minimiser u with appropriate
values (by using, for example, k-means). The output is a global segmentation of the image, split up into K phases.

Another convex approach by Alberti, Bouchitte and Dal Maso [1] calibrates the optimizer of a new convex functional to coincide
with an absolute minimizer of the original (non-convex) MS functional, by finding a lower bound of MS and optimizing it. To
1, t<ux),
0, else. '
Denote a vector field ¢ = (¢*, p') € Co(Q2 x R). Let u™, u™ be limits of u from two sides of I with u™ > u~. Denote by v,
the unit normal oriented from the u™~ side to u™ side along I". Then the convex relaxed version of the MS functional [1] can be
written as:

introduce the model, we define the characteristic function, 1, : 2 x R — {0, 1}, of the subgraph of u: 1,(x, t) = {

Fems(u) = sup/ ©D1,. (3)
peK JOXR
where the set K is convex, defined by
X 2
K = {w e o(@xB) EEOL iy < At 20,
t>
‘/ wx(x,s)ds‘ <py,VxeQ tt,beRy. (4)
t

Here the connection of (3) to MS, to be explained shortly, is not yet obvious. A key property of (3) for a general ¢ is the

following [1]:
ut
/ pD1, :/ (wx-Vu—wt)dx—F/(/ wxdt)uudHl. (5)
QxR or r NS

Combining the cosine formula for vectors, ¢* - Vu < |¢*|?/4 4+ |Vul?, with the first constraint in (4), |@*(x, v)|?/4 — @' (x, u) <
2(u—z(x))?, we get ¢*-Vu—¢" <|Vul>+ 5(u— z(x))?, which clearly connects to the fitting term and the regularisation
term of the MS. Hence if ¢ € K from (4), the first term in (5) becomes:

Q\r((,ox(x, u) - Vu—@'(x,u))dx < /Q\r |Vuldx + g/Q(u — z(x))%dx.
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The second term in (5) satisfies | (fuu,+ (pxdt) vudH' < v [ vudH' = vH (). So, overall, the convex functional (3) provides
a lower bound for MS (1):

/ D1, < i/(z— u)2dx+/ |Vul?dx + vH (), (6)
QxR 2 Ja or

since the right hand side is exactly the MS functional. As remarked before, this particular lower bound has the same minimiser as
the MS model. This theoretical formulation was not tested in [1] but was later studied in [34] by introducing an efficient primal
dual algorithm for solving it.

2.2. Local and Selective Image Segmentation

Unlike global segmentation methods as reviewed above, selective segmentation methods aim to segment a particular and local
region(s) of interest only. One method of doing so is to use a classic edge based model, initialise inside the region of interest,
evolve the contour and stop when suitable criteria has been met (either convergence or early stopping when the region of interest
has been segmented, to prevent leaking).

The distance regularised level set evolution (DRLSE) model introduced by Li et al. [26] is one such edge based segmentation
method, involving driving a contour to a stopping condition informed by an edge detector. The DRLSE model is given by the
following:

Forise(¢) = 1 /Q p(IV])dx + A /Q 98(~ )| Vbldx + o /Q gH($)dx. )

where g is an edge detector, H is the Heaviside function and ¢ is the Dirac delta function. The authors suggest two different
definitions for p given as: pi(s) = 3(s — 1)°, pa(s) = ﬁ(l —cos2ms), if s <1 and 3(s—1) if s> 1. Generally p = p,
is preferred. Finally, the DRLSE model uses a level set function ¢ [32], where the contour I is the zero level set of ¢ i.e.
M={xeQ:p(x) =0}, inside(l") = {x € Q: ¢(x) > 0} and outside(I") = {x € Q2 : ¢(x) < 0}. This model is also suitable for
images of intensity inhomogeneity because it is not reliant on intensity information directly, i.e. provided that the inhomogeneity
in the image is not too drastic, segmentation results can be good. A downside is that the model is non-convex, and moreover
is not necessarily designed for selective segmentation. A good selective result is heavily dependent on initialisation and suitable
stopping condition.

More robust selective segmentation methods, such as the models we review from now and in our proposed methods shortly,
make use of a set of marker points as described earlier. These points are usually defined by a user clicking on the image, and the
points can be used to construct geometric constraints in a model in order to segment the object of interest only. This approach
is more reliable than using an edge based model (relying on stopping criteria and good initialisation), as selectiveness is enforced
directly in the model.

Liu et al. [28] proposed a selective model using the SaT segmentation paradigm, based on Cai et al. [11], Gout et al. [23]
and Badshah and Chen [5]. Their model incorporating M in term w is as follows:

Fu(u) = %/sz(z—u)2dx+g/Q|W|2dx+/Q\w|dx, 8)

where w? =1 — gd, wh;are d and g are distance and edge detection functions respectively, used in [23, 5], given by:
dx) =TI~ (1 - efﬁ), and g(|Vz(x)|) = m,
and then thresholding u gives the selective segmentation. The model is interesting but robustness is an issue due to strong
requirements on markers (e.g. close to edges), as observed from [28] and also tests in §4.

The recent approach for selective segmentation by Roberts and Chen [36] makes use of an edge-weighted geodesic distance
to achieve selectiveness. Their convex model is:

for x € ©2,x; € M. In this approach, one first solves for u in (8)

Fre(u) = /Qg|Vu|dx—|—>\/Q (z=ca) —(z- 62)2)udx+9/QDudx, (9)

where ¢; and ¢ are the average intensities inside and outside I respectively. D is the geodesic distance defined as D(x) =
Do(x)/||Do(x)]||L Where:

[VDo(x)| = € + Bs|VS (2(x))]? + 0sDe(X), x € Q, (10)

with Do(x) = 0 for x € M, De(x) is the Euclidean distance from M and in [36] the parameters are set to be € = 107°, 86 =
1000, 6 = 0.1. The equation (10) offers us a way to prescribe a desirable distance as well as where the edges are expected to be.
Here S (z) denotes the solution after L cheap fixed point Gauss-Seidel iterations to the anisotropic TV denoising [13, 33] model:
SH(z) = argming £ [ (0 — 2)°d2+ 4 [, 9(|Vz])|V|dQ2. To solve the Eikonal equation (10) efficient numerical schemes such
as fast sweeping [43] or fast marching [40] can be implemented.

Comput. Math. Comput. Model. Appl. 2022, Vol. 1, Iss. 2, pp. 86—103 Copyright (© 2022 Shahid Beheshti University.



Computational Mathematics and Computer Modeling with Applications L. Burrows et al.
______________________________________________________________________________________________________________________________________|]

2.3. Intensity Inhomogeneity

There are innovative works that apply the CV model indirectly, extending its capability to deal with intensity inhomogeneity (for
certain images). In 2016, Ali et al. [2] proposed a variational segmentation model capable of segmenting images with intensity
inhomogeneity. They considered the minimising functional Fai(¢, c1, ¢, di, d»), defined by

/Q(x1<w—cl)2+x2(w*— W — ) ) H(®) dX+u/Q<5(¢)IV¢\ dx

+/ (AI(W—c2)2+xz(w*—w—d2)2)(1—H(¢))dx, (11)
Q

where z* = gk * z with gx an averaging convolution operator of window size k, and w = zz*. Here, ¢; and ¢, are the average
intensities of w inside and outside I, and similarly di, d> are the average intensities of w* — w inside and outside . The idea is
that the new images w, w* — w are more likely to have a distribution of piecewise-constant intensities, though z may not.

Additionally, Mabood et al. [29] proposed the following selective segmentation functional capable of segmenting objects of
intensity inhomogeneity:

Frtabood (@, a0, a1, a2, bo, b1, bo) = A1 /(z* — (a0 + a1x + axy))?H() dx
Q

+ >\2/(Z* — (bo + bix + boy))*(1 — H(¢)) dx + u/ dgé(@)|Ve| dx, (12)
Q Q
where the new image z* = éZ?:l JE, is assumed to have a distribution of piecewise-linear intensities, with J5 = Ko *
[(z«, 2y, 2)7 (2« 2y, 2)]; here the Gaussian kernel K, with standard deviation o is applied point-wise to the 3 x 3 matrix. The values
a; and b; are coefficients of linear functions approximating the intensities of z* inside and outside the contour ' respectively, where
we use the notation x = (x, y). Requiring the new images (or their transforms) to have a specific form of intensity distribution
amounts to demanding the input image z is in a certain class, and so implicitly imposing a condition on robustness.

3. Proposed Models and Implementation

We now present two convex and selective models that are capable of segmenting images with piecewise smooth intensities (not
piecewise constants) and designed to overcome the shortcomings of related models. Though building on existing works, our
models offer more robustness (i.e. less parameters’ sensitivity) than (8), do not require as many marker points from a user,
and do not require as strict positions of where these markers should be inside the object. They differ from the less-widely used
calibration method (3) in that local selectivity is achieved, not aiming to segment all objects.

3.1. Model 1 by two-stage selective segmentation

Our first proposed selective model is given by the following functional:

min F(u) = é/(z —u)’dx+ E/ |Vul? dx+/ |Vul dx+9/ Du dx (13)
u 2 Ja 2 Jo Q Q
sit. |[VD(X)| =€+ Bs|VS (z(x))° + 6sDe(x),  ueW(Q) (14)

where details of incorporating the geometric prior by computing the the geodesic distance D can be found in (10). We see that
the model approximates the MS equipped with a distance constraint, because if 8 = 0 it is reduced to the Cai et al. [11] model
i.e. (2) that is based on the original MS model (1) for u € W'?(Q). Therefore, with the addition of the selective (distance)
constraint, our proposed model can be viewed as a selective convex variant of the Mumford-Shah model.

The addition of the term fQ Du dx encourages u to be small away from the user input. We see the effect of the model in
Figure 1, where we show an example output of our model on a noisy synthetic image. We see that, in addition to denoising
the image, the output encourages the values of pixels away from user input M to be small. This is exactly the effect that
adding our selective constraint has. Where D is small (i.e. close to M) the constraint doesn't apply, whereas where D is large
(i.e. away from M) the constraint is applied and this information is filtered out (i.e. the intensity of the output is encouraged
to be smaller). The result is an output in which only the region of interest has notable intensity, and the background can be
thresholded out in the second stage.

Once the minimiser u* is found from solving (14), we can obtain an appropriate segmentation result by thresholding u*
suitably. The binary image representing our segmentation result, &, can be defined by ¥ = {x € Q : u*(x) > p}, where p € [0, 1]
is the threshold value. Typically, the best results occur when the user selects a value of p manually through tuning empirically,
as suggested in [11].

In order to state a theory of the existence of a unique minimiser, we impose the constraint u > 0 on the energy (14) but in
practice this is not required. Hence the model takes the form Fi(u) =

i/(zfu)deJrE/ |Vu|2dx+/ \Vu|dx+9/Dudx+XC(U), (15)
2 Jo 2 Ja Q 0
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(a) Image with user input M. (b) Proposed model output.

Figure 1. Example output of our proposed model on a noisy synthetic image. Here we see the effect of the distance constraint on the output of the model.
The background objects (pixels away from M) have low intensity (relative to the region of interest) and can therefore be easily thresholded out to achieve
segmentation.

where xc is the characteristic function of the set C = {u € wh2 .y > 0}.

Proposition 1 Let z € L?(Q). Then model (15) is strictly convex and there exists a unique minimiser u(x) € W*?3(Q).

Proof. To begin, we first show that 0 < inf,cy12(q) F1(u) < oo, as done in [11]. To prove the upper bound, take up = 0 and
obtain the inequality

. A
inf  Fi(u) < FA(w) =% / Z2dx < oo
uewl2(Q) 2 Jo

since the lower bound is guaranteed by the projection onto the set C.

We know the first three terms of Fi(u) are convex and lower semi-continuous from [11]. Additionally, we know from [36]
that the distance term (linear) is convex, and the set C is a convex set, so Fi(u) is fully convex. To show Fi(u) is lower semi-
continuous, we need to show that the final two terms are lower semi-continuous. Clearly the fourth term is lower semi-continuous

as Yu, ug € W2
lim inf/Dudx:/Duo ax.
u—ug Q Q

Finally, the characteristic function of any set is lower semi-continuous if and only if the set is closed. Clearly the set C is closed,
and so we can conclude that our model Fi(u) is lower semi-continuous.

1
Next we prove coercivity by showing that ||ul|y12(q) is bounded by \/F1(u). First we see that || Vul|,2q) = (fQ |Vul? dx) T <

2
\/ =z F(u), and also
2
lulli2) < [lu—=zll2) + 1Zll20) < XFI(U) + 1zl 20

Therefore, combining the above yields

ullwrzqy = lulli2@) + 1IVUlli2@) < lu = 2lli2¢0) + l12]l12() + IV Ull2(0)

< (\/%4- \/%)\/Fl(u)+ l12]l.2(q).

and so F1(u) is coercive. Using this fact, combined with the knowledge that W'?(Q) is a reflective Banach space and Fp(u) is
convex and lower semi-continuous, then we can conclude that a minimiser exists in W*2(Q). Uniqueness of the minimiser can
be implied by the convexity of Fi(u). O

Compared to previous selective segmentation models such as [35, 36], who assume a piecewise-constant distribution, our
model can handle non-piecewise constant images, as a key feature of the SaT paradigm. Because of this, we are not limited to
a specific class or classes of image. The proposed model is quite capable of segmenting natural, synthetic and medical images.

The model by Liu et al. [28] given in (8) is a selective model that also follows the SaT paradigm, but they use a Euclidean-like
distance as a geometric constraint, which restricts the flexibility of the placement of marker points M. Their method requires
many marker points, usually spanning the length of the object, and better results come if markers are placed along the perimeter
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(a) Image with user input M. (b) Euclidean distance to M. (c) Geodesic distance to M.
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i T [

Figure 2. Comparison of Geodesic and Euclidean distance constraints.

of the region of interest. As we will show in §4, the use of geodesic distance in our model allows us to be much less strict
in terms of the placement of user input. Moreover, overall less user input is required for our model, often only 1 — 3 clicks is
needed. This is a clear advantage over the models that employ an Euclidean-like distance, such as [28, 41, 5].

See Fig. 2 for a visual comparison of Euclidean and geodesic distances. We see that, with the input placed in the bottom right
of the triangle, the Euclidean distance is actually placing a larger constraint on pixels at the top of the triangle when compared
with pixels in the left most part of the star. This is not desirable, as this would mean we could not segment the entire triangle
without including the star. In contrast, the geodesic distance applies the same constraint (close to 0) for the entire triangle, and
so segmentation of the region of interest is easily achievable. Of course with more input spanning the length of the triangle the
Euclidean distance would be suitable, however this toy example highlights the downside of a Euclidean-like distance with minimal
input, as will be further shown in §4.

In images with drastic intensity inhomogeneity the geodesic distance also requires more input from the user to cover the range
of intensities, however this increased requirement is still less than what a Euclidean-like distance would require on the same
difficult image.

3.2. Model 2 by inequality constraint

Building on the calibration method (3), we propose a new selective model:

Feo(u) = sup/ D1, (16)
QxR

peKp

where Kp is a convex set such that:

X 2
Kp = {(p € Co(Q xR) : @' (x, t) > # — %(t —2)> - 6Dt,
t>
‘/ (px(x,s)ds’ <uVxeQ t ti,th Ry, (17)
ty

where 6 is a parameter and D is the geodesic distance constraint defined in (10). The set Kp is similar to the set K defined in
(4), but includes the selective constraint. We can show that the above formulation satisfies, similar to (6),

/ D1, < é/(z—u)zdx—|—/ |Vu|2dx+uH1(r)+9/Dudx.
QxR 2 Ja o\r Q

Similarly to model 1, segmentation is achieved by thresholding the minimiser from the model.

3.3. Numerical Solutions

The above two models are presented as nonlinear optimization. To solve them there are two general approaches: (i) discretize
the functional as a nonlinear function for discrete variables; (ii) find the Euler-Lagrange equations and then discrete the partial
differential equations. Below we take the second approach for both models.
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To implement Model 1 by (14), we adapt the Chambolle-Pock primal dual method in [15] designed for convex and non-smooth
functionals. Our model (14) in the discrete setting is given as:

. A
min [ Vull: + 511z = ull3 + £1IVull3 + 6(u. D),

where [|[Vullt =32 j)eq \/(qu)ﬁj + (Vyu)?; and we use backward difference to approximate the discrete gradient operator V
(so u, D are now in matrix form). Following [15], we pose the model into a primal-dual formulation as follows:

. . A
min max —(u, divp) + 71z — ull? + %IIVUIB +6{u, D) — xr(p),

where p is the dual variable and the convex set P is given by P = {p:||p|l < 1}, where ||p|loc = max;;|pij|, and |pij| =
(px)7; + (py)7; (with p = (px, py)). The function Xp is the characteristic function of P.
The primal-dual algorithm is given as follows:
p* + oV P = P
' i max(LIBD)
0F = Uk — VPRl e = ‘7_—71(7(““()\2*99)))’

TTETRE(VY)
L_Ik+1 — uk+1 + n(uk+1 _ Uk),

i)\k

where F is the fast Fourier transform operator, 7 = 0.01 and o = 1/(87) are fixed time-step parameters, and 7 = 0.9 is a fixed
parameter.

For Model 2, we utilise the primal-dual algorithm proposed by Pock et al. [34], where instead of projecting onto the convex
set K defined in (4), we project onto the convex set Kp enforcing the selective constraint defined in (17). To introduce the
details, we first replace 1,(x, t) from (3) by a generic function v(x, t) : Q x R — [0, 1] such that

tﬂrpoo vix, t) =1, tﬂrpoc v(x,t) =0.
Thus, we solve the following problem:
min sup / @Dv. (18)
V. peKp JOXR

Following the work of [34], we discretise on the grid and still denote by v and ¢ respectively as their discretised versions.
Then, we write (18) as the following primal-dual problem min,cc maxeek, (Av, @), where A is the discrete gradient operator and
C ={v:vel0,1]}. The algorithm for solving this, as presented by Pock et al., is given as the following iterative system:

P = Ny (6" + 0AT),
VKL = Ne(vF — TA" ),
PR oyl ko

where 7,0 > 0 are two time-steps. Projection onto the set C is achieved by a simple clipping operation. Projection onto the
set Kp is more difficult as it is the intersection of two convex sets involving local and non-local constraints. In order to do this,
we use Dykstra’s projection algorithm [7]. To handle the first constraint in Kp, we project onto a parabola imposed by the
constraint using Newton's algorithm. To handle the second non-local constraint in Kp, we use a soft shrinkage scheme ([21]
which refers to the analytical solution of miny ||x — y||3/2 + ¥|Ix]|:.

4. Numerical Experiments

In this section we conduct numerical experiments in order to show the advantages of our proposed models (Model 1 as Model
2) comparing with five other models discussed in §2, namely:

e Ali 2] — The model by Ali et al. [2] given in (11).

e Mabood [29] — The model by Mabood et al. [29] given in (12).

e DRLSE [26] — The DRLSE model by Li et al. [26] given in (7).

e Roberts [36] — The model by Roberts and Chen [36], given in (9).
e Liu [28] — The model by Liu et al. [28] given in (8).

The first three models on the list are non-convex, implementing level set methods, whereas the latter two and ours are convex. In
all experiments we supply the methods with a set of marker points M input by the user. These marker points are used to design
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geometric constraints for the various methods, and we also use them as initialisation when performing the optimisation; this is
particularly important for the non-convex methods to achieve a desired result in the region of interest. We use the numerical
algorithms discussed in the original works to implement each of the models.

The structure of the experiments is as follows: we initially show our models as well as Liu’s model on relatively simple images.
This is to demonstrate the intermediate steps of the SaT segmentation paradigm for selective segmentation. Here, we also
highlight the advantages of our methods in terms of the robustness of user input. We remark here that while both of our
proposed models show advantages, we prefer Model 1 as Model 2 is computationally expensive. Then we show some qualitative
results on some images (both medical and natural) displaying some intensity inhomogeneity. Finally we show some quantitative
comparisons for a dataset where ground truth is available.

Figure 3. An intuitive display of the different steps of models employing the " smoothing and thresholding” paradigm for selective segmentation: Liu’s [28] and
our Model 1. In the first column we show the image with the user input M. Column two shows the output u of Liu's model. Column three shows binary
segmentation result of Liu's after thresholding. Column four shows the binary segmentation overlaid on the original image. Similarly, columns five, six and seven
show: the output of our Model 1, the result after thresholding and the result overlaid on the original image respectively. The examples in the second and third
row demonstrate how our approach is more robust to the placement of user input than Liu's.

All experiments were conducted in MATLAB R2021a on a PC with AMD Ryzen 5 3600 3.6 GHz; DDR4 16GB © 3200 MHz.
The user input (marker set M) was taken manually in each case using the roipoly command’.

4.1. Visual Comparisons of SaT models

To begin the experiments, we show in Figure 3 a comparison between the model by Liu et al. [28] and our Model 1. Both
use the SaT segmentation paradigm, and so we have displayed the intermediate steps of each model to given an understanding
of how a segmentation result is acquired. To be clear, for each example we show the input to both of the models, then show
three steps for each model: the output u of the model, the segmentation output after thresholding (a binary image), and the
segmentation overlaid on the original image.

As a comparison, we show the examples from Figure 3 in the Model 2 framework in Figure 4. We note that while providing
similar results, in comparison to the Model 2 method, the Model 1 method is mutltitudes faster (we can expect a 256 x 256
image to take just seconds to process for Model 1, however Model 2 may take a couple of hours for a single image), and so we
focus our attention in the rest of the experiments to just Model 1 method.

We also compare both of our Model 1 with Liu's in Figure 5. Figures 3 and 5 highlight the advantages of our model compared
with Liu's in terms of robustness of user input. Liu's model requires input to span the length of the object for good results,
whereas our method requires minimal clicking at any point in the object. This is particularly highlighted in both of the examples
in Figure 3 where we have input the marker set M in the corner of the objects. Clearly the model by Liu struggles to identify
the entire object, whereas our Model 1 is capable of segmenting the full object, because of the geodesic distance constraint.

Remark 1 For the second example in Figure 3, we note that the object selected has intensity close to 0. For the selective variant
of the SaT paradigm, it does not make sense to minimise the relevant function to obtain a u where the desired object has a
value close to 0. When the object of interest has low intensity we replace z as the input image by 1 — z, where z € [0, 1].

TExamples may be found from https://www.liverpool.ac.uk/~cmchenke/softw.htm
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(a) Image with input
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(f) Solution u (g) Thresholded u
(i) Image with input (j) Solution u (k) Thresholded u (1) Segmentation

Figure 4. An intuitive display of the different steps of our Model 2 on examples first presented in Figure 3. First column: the input image. Second column: the
0.5 isosurface of solution u of the model. Third column: The binary segmentation output after thresholding. Fourth column: Segmentation result overlaid onto
the original image.

4.2. Qualitative Comparison of Images

Here, we now compare our Model 1 with the five models detailed at the beginning of this section.

First we show two examples of Liver segmentation in Figure 6. The example in the top row is relatively easy, with edges well
defined and only slight inhomogeneity. We intentionally placed input in a narrow region at the top to demonstrate robustness
against placement of marker set compared with the model by Liu again. Despite the Liu model struggling, the model by Mabood
and the DRLSE model perform well, largely due to well defined edges. However, in the example in the second row we see that
none of the competing models successfully segment the liver with the drastic inhomogeneity. The models by Ali and Mabood
fail to segment the inhomogeneous part and are susceptible to leaking to the nearby object in the upper right of the liver.
The DRLSE model stops at the artificial edge created by the dark region on the organ, and the Roberts model who assume
a piecewise constant intensity distribution fails to capture the intricacies of the region of interest. Moreover, the Liu model
fails to capture the liver without leaking to a nearby object. We remark that the Liu model would be successful if given more
precise input, however given the limited marker set it fails to effectively segment the object. Clearly our Model 1 outperforms
the competitors here.
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(k) Input (1) Liu u (m) Liu contour (o) Our contour

Figure 5. Comparison of our Model 1 with Liu et al. [28], showing advantages of minimal input. Liu’s method requires the user input to span the entire length
of the object, in all corners of edges whereas ours needs minimal clicking.

Input M Ali [2] Mabood [29] DRLSE [26] Roberts [36] Liu [28] Ours

Figure 6. CT liver segmentation. The top example shows only slight inhomogeneity and most models perform decently. In the second example, the competing
models fail to adequately segment the liver, whereas our Model 1 performs well. Each image is of size 270 x 320.

In Figure 7, we show some examples of lung segmentation of CT scans of patients with COVID-19 *. The images display
inhomogeneity when segmenting the whole lung, due to scarring tissue. We find that the models by Ali and Mabood struggle
to effectively segment the lung well. The DRLSE model performs better, though we see that given the initialisation, the curve
usually evolves past the boundary of the lung at an area of low contrast before completely segmenting the lung in all places. The
Roberts model, interestingly, struggles to segment these images. When aiming to segment the lung the intensity of the region
of interest is similar to the intensity of the background (i.e. c1 & &), and so the CV fidelity has little to no effect, thus Roberts
model on this class of images was temperamental (in fact, in [37], they reformulate the CV term to be better suited to cases
like this). The Liu model almost segments the lungs well, however fails to capture all of the object due to limited input. Here is
more evidence that our Model 1 needs less input, as our result is clearly the best segmentation here.

fTest data from https://coronacases.org/
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Input M Ali [2] Mabood [29] DRLSE [26] Roberts [36] Liu [28] Model 1

Figure 7. CT lung segmentation of lungs with scarring tissue, providing some inhomogeneity. Each image is of size 512 x 512.

We now show some results on natural images, displayed in Figure 8. The image on the top row of the mushroom presents
some intensity inhomogeneity over the whole object. The results from Ali and Mabood show the segmentation struggling to
segment the stalk. The DRLSE method stops at the edge between the cap and the stalk, and the input provided for the Liu
method is not suitable to segment the entire object. The Roberts model does well, but due to the limited CV fidelity, it does
not segment the darker part of the cap of the mushroom, whereas our model segments the object well.

Similarly for the vase and the dog, inhomogeneity is present throughout the region of interest. For both Ali and Mabood, we
either tune the fidelity parameters to be too restrictive within the object and no leakage outside the object, or make the fidelity
too dominant and thus segment regions outside the object of interest. The DRLSE is susceptible to areas of low contrast, for
example at the bottom of the vase either side where it begins to curve. The Roberts model is unable to segment the objects
due to the restriction of piecewise-constant intensities, and as before the Liu model struggles due to limited input.

The last two rows show segmentation of sand dunes. These were selected due to the piecewise-smooth region of the dunes,
and the low relatively low contrast at the bottom right at each of the dunes. Only the Roberts model is comparable here, and
yet that model fails to segment the darker region in the bottom left of the second image, due to the fidelity.

4.3. Quantitative Comparison

Finally, we evaluate our model on images from both the BraTS dataset [30] and the LiTS dataset [6], both providing ground
truth segmentations hand drawn by experts®.

We assess the segmentation accuracy using a number of metrics given in terms of the four quantities: True Positive (TP),
True Negative (TN), False Positive (FP) and False Negative (FN). These quantities are defined using the segmentation output
of the relevant model, ¥ and the ground truth, GT.

2TP

The DICE coefficient [20] DICE(Z, GT) = m
P

The Jaccard coefficient: JAC(Z, GT) = m

TP+ TN
FN+FP+TP+TN’

Segmentation accuracy ACC(X, GT) =
e Matthews correlation coefficient:
TP-TN—-FP-FN

Mo O = e F T PR TP+ FN)(TN = FR)YTN - FN)

For DICE, Jaccard and Accuracy, a value of 1 is a perfect match and the quality of the segmentation result as the value reduces
towards 0. For MCC, a perfect result is 1, and the minimum value possible is —1.

We run a comparison on 51 images from the BraTS dataset, and show a few select results in Figure 9, where we see our
model outperform the competing methods, particularly on the final three selected images. The DICE scores for these images

§Data from https://www.kaggle.com/datasets/awsaf49/brats2020-training-data and https://www.kaggle.com/datasets/andrewmvd/
liver-tumor-segmentation
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Input M Ali [2] Mabood [29] DRLSE [26] Roberts [36] Liu [28] Model 1

Figure 8. Natural Images. The sizes of each image are: Mushroom - 481 x 321, Vase - 481 x 321, Dog - 882 x 490, Sand Dune 1 - 573 x 942, Sand Dune 2
- 406 x 730

Ali Mabood DRLSE Roberts Liu Model 1
BraTS 1 | 0.955 0.943 0.946 0.961 0.967 0.969
BraTS 2 | 0.913 0.903 0.839 0.858 0.932 0.955
BraTS 3 | 0.804 0.865 0.819 0.815 0.821 0.937
BraTS 4 | 0.883 0.740 0.838 0.898 0.873 0.904
BraTS 5 | 0.853 0.840 0.662 0.878 0.849 0.951
Table 1. DICE scores of all the BraTS images found in Figure 9

can be found in Table 1, and a full quantitative display of all metrics applied to the 51 images can be found in Table 2, where
we show the mean and standard deviation scores for each model, and for each metric. Moreover we display the mean time took
for each model, where all images are of size 240 x 240.

Similarly, we also run a comparison on 41 images from the LiTS dataset, showing a few select results in Figure 11. A full
quantitative display of all metrics applied to the 41 images can be found in Table 3, where we show the mean and standard
deviation scores for each model for each metric. We again display the mean time took for each model, in this dataset all images
are of size 512 x 512.
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Input M Ali 2] Mabood [29] DRLSE [26] Roberts [36] Liu [28] Model 1 Ground truth

Figure 9. BraTS images: Each line corresponds to a new example, and we show in the first column the user input M, in the middle columns the performance
of the models, and the ground truth in the final column. Quantitative results can be found in Table 1

time DICE Jaccard " Accuracy” "MCC"
(s) mean | std mean [ std mean | std mean | std
Al 6.43 0.891 0.094 | 0.814 0.133 | 0.993 0.008 | 0.895 0.083

Mabood | 1.83 0.842 0.067 | 0.732 0.100 | 0.991 0.006 | 0.846 0.059
DRLSE 10.9 0.818 0.112 | 0.706 0.150 | 0.991 0.006 | 0.827 0.100
Roberts | 28.5 0.808 0.130 | 0.695 0.162 | 0.990 0.008 | 0.821 0.110
Liu 10.9 0.939 0.045 | 0.889 0.050 | 0.996 0.003 | 0.939 0.046
Model 1 | 0.435 | 0.951 0.051 | 0.910 0.078 | 0.997 0.004 | 0.949 0.052
Table 2. Quantitative scores of the models evaluated on 51 images from the BraTS dataset. Here we display the mean DICE,
Jaccard, Accuracy and MCC scores for all models, as well as displaying the standard deviations.

time DICE Jaccard " Accuracy” "MCC"
(s) mean | std mean [ std mean | std mean | std
Ali 29.27 | 0.564 0.176 | 0.414 0.170 | 0.996 0.004 | 0.613 0.147

Mabood | 20.8 0.727 0.246 | 0.617 0.252 | 0.997 0.005 | 0.743 0.232

DRLSE 145.5 | 0.803 0.100 | 0.682 0.128 | 0.999 0.002 | 0.817 0.083

Roberts 12.3 0.832 0.131 | 0.729 0.152 | 0.999 0.001 | 0.839 0.112

Liu 135.6 | 0.715 0.225 | 0.599 0.253 | 0.996 0.009 | 0.740 0.200

Model 1 | 0.807 | 0.901 0.055 | 0.824 0.084 | 0.999 0.001 | 0.902 0.052
Table 3. Quantitative results on the LiTS dataset, shown for each algorithm the mean time taken to converge, and average and
standard deviation values of DICE, Jaccard, Accuracy and MCC of the outputs of each respective model, compared with the

ground truth.

4.4. Parameter selection

There are a few parameters that need to be selected in order to achieve a good selective segmentation result. For Model 1, we
typically fix 4 = 1 and vary A € [3, 10] depending on the noise level. The parameter 6, which controls the degree of selectiveness,
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Figure 10. Boxplot of the quantitative figures in Table 2, for the BraTS dataset.

Input M Ali [2] Mabood [29] DRLSE [26] Roberts [36] Liu [28] Model 1 Ground truth

Figure 11. A few select images from the LiTS dataset. We show the input in the first column, the performance of the models in the middle columns, and the
ground truth in ithe final column. Quantitative results on the entire LiTS dataset can be found in Table 3

is dependent on how complicated the image is, and how well the edges of the object are well defined. We find best results come
from tuning empirically but in most cases the choice is fairly robust. We find 6 € [20, 50] all give satisfactory and similar results
in the vast majority of cases.

A threshold parameter p € [0, 1] needs to be selected to acquire a binary segmentation result. We typically find the best results
come from fine tuning manually, however this isn't too much trouble as the most expensive part of the model (optimisation)
has already been performed, and a wide range values can easily be checked and the best selected.

In Figure 13, we show some heatmaps to demonstrate the parameter sensitivity on some of the examples already shown earlier
in the section. We show the ground truth segmentation in the first and third columns, and in the second and fourth column
respectively show a heatmap. The heatmap displays a range of input parameters to our proposed model on the x and y axis,
and the colour corresponds to the DICE score. Here we look at the relationship of A and 6, as u is fixed as u = 1. The x-axis
corresponds to 6 varied from 6 € [1,200] in increments of 0.5, the y-axis corresponds to A varied from A € [1, 30] in increments
of 0.5, and the corresponding colour is the DICE of the output of our proposed model with those parameters; a colour of green
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Figure 12. Boxplots of quantitative results on the LiTS dataset. Values can be found in Table 3

is a DICE of 1, whereas red is 0. We see that for a wide range of combinations of A and 6 the DICE score is high, showing that
our proposed model is not so sensitive to parameter choice.

0 0.2 0.4 0.6 0.8 1

Figure 13. This figure displays parameter analysis for four examples shown earlier in this section.

5. Conclusions

We have proposed two convex and selective segmentation models based on approximation of the Mumford-Shah model. Different
from previous works on selective segmentation, the new models requiring much less marker points (often just one point) can
segment an image with intensity inhomogeneity. The recommended method is Model 1, a two-stage approach, consisting of
first finding the minimiser to the model and then suitably thresholding the minimiser to achieve the segmentation result. For
Model 1, we have proved that a unique minimiser exists. Numerical results by adopting a primal-dual algorithm for both models
have shown that they are both effective and the new Model 1 outperforms recent novel works in a major way. Future works will
generalise such models to a deep learning framework following the ideas of [8].
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