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A new approach for solving nonlinear
equations

Marzieh Dehghani-Madiseha

In this paper, we describe and analyze an efficient method to find the roots of a general one variable function f : R→ R.
The proposed method is based on partitioning an interval (that probably contains root(s) of f ) into subintervals. From

this point of view, we name this method a finite element approach for root finding. Also the convergence analysis of the

presented method is presented. The new approach can be generalized to estimate the roots of the multivariable functions

in higher dimensions. Also it is capable to find all of the roots of the function on a determined interval. Finally, numerical

examples are given to illustrate the effectiveness of the new method. Copyright c⃝ 2022 Shahid Beheshti University.
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1. Introduction

Finding the zeros of a nonlinear equation, is a classical problem which has nice applications in various branches of science

and engineering. Since the zeroes of a function generally cannot be computed exactly, rootfinding algorithms are provided to

approximate the zeroes of the function. Consider the general nonlinear function f : R→ R. The roots of this function are the
values of x for which

f (x) = 0.

So, for example x∗ = 0 is a root of f (x) = x , f (x) = x2, f (x) =
√
x , and f (x) = ln(x + 1).

Nonlinear equations arise in all branches of science, engineering, and technology. In recent years, a large number of articles

for root finding have been appeared in the literature. Iterative methods for finding a simple real root x∗ of a nonlinear equation

f (x) = 0 have good convergence properties if the initial approximation is reasonably close to the root. But choosing a good initial

approximation is very difficult, specially when the function f has improper behavior. One of the most popular iterative methods is

the Newton method which has a locally quadratically order of convergence. To improve the local order of its convergence, many

modified methods have been proposed [27, 10, 9, 23, 24]. One of them is Ostrowski’s method which is a fourth order method

and requires two evaluations of the function and one evaluation of its first derivative. But all of these methods are iterative

methods and for a good convergence, must have a good initial approximation, also all of them can only find at most one of the

roots of the function f . Many authors proposed numerical methods for solving this equation such as the bisection method, the

chord method, the secant method, the false position (or regula falsi) method, the Möller’s method, the modified regula falsi

method, the Pegasus method, and so on, see [26, 14, 15, 3, 32, 1, 36, 25, 28, 12, 13, 2, 22, 29, 4, 31, 17, 34, 35, 5, 19, 21].

In this paper, we want to use a finite element approach to find the roots of a nonlinear equation. For this purpose, for

f : [a, b]→ R, we introduce a partition Th of [a, b] into K subintervals Ij = [xj , xj+1] of length hj , with h = max 0≤j≤K−1hj and
then employ Lagrange interpolation on each Ij using k + 1 equally spaced nodes {x (i)j , 0 ≤ i ≤ k}.
For k ≥ 1, we introduce the piecewise polynomial space

χkh = {v ∈ C0[a, b] : v |Ij ∈ Pk(Ij),∀Ij ∈ Th},

which is the space of the continuous functions over [a, b] whose restrictions on each Ij are polynomials of degree less than or

equals to k. Then, for any continuous function f in [a, b], the piecewise interpolation polynomial Πkhf coincides on each Ij with
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Figure 1. Basis functions corresponding to the x = 2, x = 3, x = 4 as main nodes in interval [1, 5]

the interpolating polynomial of f |Ij at the k + 1 nodes {x
(i)
j , 0 ≤ i ≤ k}. As said in [30], if f ∈ C

k+1([a, b]) using the interpolation

error within each interval we obtain the following error estimate

∥f − Πkhf ∥∞ ≤ Chk+1∥f (k+1)∥∞, (1)

where ∥.∥∞ is a norm defined by ∥f ∥∞ = supx∈[a,b] |f (x)|. Note that a small interpolation error can be obtained even for low k
provided that h is sufficiently small.

Now the new method is based on the root finding of the piecewise interpolation polynomial Πkhf on each subinterval Ij ,

j = 0, 1, ..., K − 1. Due to the convergence of this piecewise interpolation polynomial to the function f , we can show that the
approximation roots that are found from the new method are convergent to the exact roots of the function f . Our approach is

based on performing the following steps:

Step 1: Divide the interval [a, b] into K subintervals Ij = [xj , xj+1].

Step 2: Form the piecewise interpolation polynomial Πkhf .

Step 3: Find the roots of the interpolation polynomials on each subinterval Ij .

Step 4: For each root, test for f (root), if it is sufficiently small, stop. Otherwise, refine the mesh size or degree of the

piecewise interpolation polynomial.

If k = 1 then we have the piecewise linear Lagrange interpolation which by dividing the interval [a, b] into K subintervals

Ij = [xj , xj+1] is of the form

Π1hf =

K∑
j=0

cjβj(x),

where cj = f (xj) and βj(x) is the basis function corresponding to the jth node, i.e.,

βj(x) =



x−xj−1
xj−xj−1

x ∈ [xj−1, xj ],

x−xj+1
xj−xj+1

x ∈ [xj , xj+1],

0 otherwise.

In Figure 1, the basis functions corresponding to the main nodes x = 2, 3, 4 on interval [1, 5] are displayed.

The linear interpolation polynomial Π1,jh f on subinterval [xj , xj+1], j = 0, 1, .., K − 1, is

Π1,jh f (x) = f (xj)
x − xj+1
xj − xj+1

+ f (xj+1)
x − xj
xj+1 − xj

.

The root of this polynomial is x =
f (xj+1)xj−f (xj )xj+1
f (xj+1)−f (xj )

which if it belongs to [xj , xj+1] then we consider it as an approximate root of

f . In Figure 2, we show graphs of the function f (x) = sin x and its piecewise linear Lagrange interpolation on [0.5, 4]. We divide

this interval into five equally spaced subintervals. As can be seen, both graphs have a root on the interval [3, 3.5].

Now, for k = 2 we divide interval [a, b] into K subintervals Ij = [xj , xj+1], j = 0, 1, ..., K − 1, of length hj , and divide the jth
subinterval as [xj , xj+1] = [xj , xj+ 12

] ∪ [xj+ 12 , xj+1] with xj+ 12 = xj +
hj
2
. The piecewise quadratic Lagrange interpolation is of the
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Figure 2. Function f (x) = sin x and its piecewise linear Lagrange interpolation
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Figure 3. Basis functions corresponding to x = 2 as a main node in interval [1, 3] and corresponding to x = 1.5 and x = 2.5 as two middle points of

intervals [1, 2] and [2, 3]

form

Π2hf =

K∑
j=0

cjβj(x) +

K∑
j=1

cj− 12
βj− 12

(x),

therein cj = f (xj) and cj− 12
= f (xj− 12

). βj(x) and βj− 12
(x) are the basis functions corresponding to the jth and (j − 1

2 )th nodes,

respectively. βj(x) is

βj(x) =



x−xj−1
xj−xj−1

·
x−x

j− 12
xj−xj− 12

x ∈ [xj−1, xj ],

x−x
j+ 12

xj−xj+ 12
· x−xj+1
xj−xj+1

x ∈ [xj , xj+1],

0 otherwise.

Note that two polynomials in definition of βj(x) are named the shape functions corresponding to node xj . Also we have

βj− 12
(x) =


x−xj−1
x
j− 12
−xj−1

· x−xj
xj−1−xj

x ∈ [xj−1, xj ],

0 otherwise.

In Figure 3, one can see the basis functions corresponding to x = 2 as a main node in the interval [1, 3] and corresponding to

x = 1.5 and x = 2.5 as two middle points of intervals [1, 2] and [2, 3], respectively.

76 Copyright c⃝ 2022 Shahid Beheshti University. Comput. Math. Comput. Model. Appl. 2022, Vol. 1, Iss. 2, pp. 74–85



M. Dehghani-Madiseh Computational Mathematics and Computer Modeling with Applications

0.5 1 1.5 2 2.5 3 3.5 4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

Figure 4. Function f (x) = sin x ’-’, and its piecewise quadratic Lagrange interpolation ’- - -’

The quadratic interpolation polynomial Π2,jh f on interval [xj , xj+1], j = 0, 1, ..., K − 1, is

Π2,jh f (x) = f (xj)
x − xj+ 12
xj − xj+ 12

· x − xj+1
xj − xj+1

+ f (xj+ 12
)
x − xj
xj+ 12

− xj
· x − xj+1
xj+ 12

− xj+1
+ f (xj+1)

x − xj
xj+1 − xj

·
x − xj+ 12
xj+1 − xj+ 12

.

If the real roots of this polynomial belong to the interval [xj , xj+1] and f (root) is sufficiently small, then we can consider them as

approximate roots of function f . In Figure 4, we show graphs of the function f (x) = sin x and its piecewise quadratic Lagrange

interpolation on the interval [0.5, 4] which is divided into five equally spaced subintervals. Although, the mesh size is large but

both graphs are coincident, which implies the good accuracy of the piecewise quadratic interpolation. It is obvious that with the

same mesh size, the piecewise quadratic Lagrange interpolation finds a more accurate root for the function f (x) = sin x than

the piecewise linear Lagrange interpolation. For other quantities of k we have the same discussion.

The rest of the paper is organized as follows: in Section 2, we study the convergence properties of the new method. Some

suggestions and development of the method are briefly discussed in Section 3. Numerical experiments are presented in Section

4. Finally, in Section 5, we end the paper with brief concluding remarks.

2. Convergence analysis of the new method

In this section, we study the convergence analysis of the new approach. For this purpose, we introduce the following space

L2(a, b) = {f : (a, b)→ R :
∫ b

a

|f (x)|2 <∞}, (2)

with

∥f ∥L2(a,b) =
( ∫ b

a

|f (x)|2
) 1
2 . (3)

Formula (3) defines a norm on L2(a, b). It is to be noted that we integrate from |f |2 in the Lebesgue sense, see [33].

Theorem 1 [30] Let 0 ≤ m ≤ k + 1, with k ≥ 1 and assume that f (m) ∈ L2(a, b) for 0 ≤ m ≤ k + 1, then there exists a positive
constant C, independent of h, such that

∥(f − Πkhf )(m)∥L2(a,b) ≤ Ch
k+1−m∥f (k+1)∥L2(a,b).

In particular, for k = 1, and m = 0 or m = 1, we obtain

∥f − Π1hf ∥L2(a,b) ≤ C1h
2∥f

′′
∥L2(a,b),

∥(f − Π1hf )
′
∥L2(a,b) ≤ C2h∥f

′′
∥L2(a,b),

for two suitable positive constants C1 and C2.

If function f satisfies in the conditions of Theorem 1 then the piecewise Lagrange interpolation polynomial Πkhf converges to

f . Therefore, we can conclude that the approximate roots that are found using the new method are convergent to the exact roots
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of the function f . Since if we get h sufficiently small, then the interpolating polynomial of f |Ij is nonincreasing or nondecreasing,
therefore, if it has a root on the interval Ij , then we have

Πkhf (xj)Π
k
hf (xj+1) ≤ 0,

and as we have

f (xj) = Π
k
hf (xj), f (xj+1) = Π

k
hf (xj+1),

then we conclude that f (xj)f (xj+1) ≤ 0, and the intermediate value theorem implies that f has a root on this interval. By the
above theorem, if h is sufficiently small, we will have higher accuracy in root finding.

With the above assumptions, it is obvious that if x∗j is root of the function Π
k
hf on the interval [xj , xj+1], then the function f

will have a root on this interval shown by x∗ and at least we have |x∗ − x∗j | < Ch wherein C is a constant. So, the new approach
for is a convergent method.

One advantage of the new method is that it can find all roots of function f on the assumed interval [a, b] while many well-

known methods can only find one root of f on this interval. The second major benefit is that the method does not rely on the

derivatives of the function. Thus it can be used to find roots of non-smooth functions. Also it can be generalized to the general

n dimensional case and doesn’t require the initial guess. But note that if we want to use large amounts of k for interpolating

function f then we face with higher degree polynomials which cause some difficulties in root finding, so we suggest to choose k

to be a small positive integer with sufficiently small amount of h.

3. Suggestions and development of the method

Since we apply the finite element technique for presenting the new method, we can use some properties of this technique to

improve the new approach such as using the hierarchical approach for interpolation, refinement approaches (p-FEM, h-FEM,

r-FEM, hp-FEM,...), adaptive approaches, and so on. In fact, for attaining methods with higher-order accuracy, we can refine

the mesh or degree of the interpolating polynomial or relocate nodes. Also in the locations of the interval [a, b] that are critical

(for example consider the case where the function f has high oscillations or has zeros that are very close together), we can use

adaptive approaches, i.e., use higher degrees for interpolating polynomials or smaller meshes on those locations.

On the other hand, we can use this approach for general n dimensional case. For example, for function z = f (x, y) and finding

set {(x, y) ∈ R2 : z = 0}, we can consider triangular or rectangular elements on the (x, y)-plane, and interpolate the function
z = f (x, y) on each element and then find roots of these piecewise interpolation polynomials. In this case, interpolation can be

done with different degrees of polynomial or with different types of elements.

For an analysis of this idea, suppose z = u(x, y) is a continuous function on Ω ⊆ R2 where Ω is a bounded open domain with
boundary Γ. Let Th = {K} be a triangulation of Ω. We define h to be the largest sides among all triangles K. Also, let r ∈ R be
a non-negative natural number, Pr (K) is the space of all polynomials of degree r on K and C

0(K) is the space of all continuous

functions on K. We define

Dαu =
∂ |α|u

∂xα11 ∂x
α2
2

, (4)

therein α = (α1, α2) and αi is a non-negative natural number with |α| = α1 + α2. We now define two spaces L2(Ω) and Hk(Ω)
for k = 1, 2, ..., as

L2(Ω) = {v : v is defined on Ω and

∫
Ω

|v |2dx <∞},

Hk(Ω) = {v ∈ L2(Ω) : Dαv ∈ L2(Ω), |α| ≤ k},

and

∥u∥L2(Ω) =
( ∫
Ω

|v |2dx
)1/2
,

|u|Hr (Ω) =
( ∑
|α|=r

∫
Ω

|Dαu|2dx
)1/2
.

Theorem 2 [20] Let K ∈ Th be a triangle with vertices ai , i = 1, 2, 3. Given u ∈ C0(Ω), let the interpolant Πrhu ∈ Pr (K) be
defined by

Πrhu(a
i) = u(ai), i = 1, 2, 3,

then we have the following estimation

∥u − Πrhu∥L2(Ω) ≤ Ch
r+1|u|Hr+1(Ω),

where C > 0 is a constant that is independent of h.
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Figure 5.Graphs of the functions in nine examples

By the above theorem if we interpolate the function u ∈ C0(Ω) on each element with piecewise polynomials, then roots of
these polynomials on each element (if there exist) tend to the roots of the main function u. Of course, finding roots of a

polynomial is very easier than a general function u.

For more details about finite element approaches, we refer the interested reader to [20, 11, 7, 18, 6, 8, 16].

4. Numerical experiments

In this section, we use some test problems to show the effectiveness of the new approach and compare the results for several

mesh sizes and for piecewise linear, quadratic and cubic interpolating polynomials in terms of the executing time and quality of

the obtained results. We arrange the obtained results in some tables therein the last column is for the executing times and all

computational times are in seconds.

In the following, we present nine examples and show the graphs of the corresponding functions in Figure 5.

Example 1 Consider

f (x) = ln(x).

By Figure 5, we find that this function has a root on [0.5, 1.5]. if we apply the new method on this interval with h = 0.1 along

the linear interpolation, and with h = 0.125 along the quadratic interpolation and with h = 0.17 along the cubic interpolation,

we obtain x = 1 which is the exact solution. But let we choose the initial interval [0.5, 2]. In Tables 1, 2 and 3, we present the

results that obtained from executing the new method. In Table 1, we consider the linear interpolation with different mesh sizes

on [0.5, 2], Tables 2 and 3, respectively, contain the obtained results from applying the quadratic and cubic interpolations with

different mesh sizes.

As one can see, for a fixed h by increasing the degree of interpolation polynomials, we have better results, i.e., we have

higher accuracy which confirms Theorem 1. For a fixed degree of interpolation polynomial, by decreasing h almost we have more

accuracy. But in the case of the cubic interpolation, this is not true in some cases. This shows that in applying interpolation

polynomials with higher degree, a medium value of h gives a good accuracy. Also, in each case, by decreasing h the computational

cost increases and for a fixed h by increasing the degree of interpolation polynomials, the computational cost increases.
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Example 2 Consider the following function on [1, 3]

f (x) = sin x + x2 cos(ex).

Figure 5 shows that this function has five roots on [1, 3]. Now, we apply the new approach to estimate them. In Table 4, we

consider the linear interpolation with different mesh sizes on [1, 3]. Also Table 5 contains results obtained from applying the

quadratic interpolation with different mesh sizes.

As one can see, for a fixed h almost we have more accuracy when the degree of the interpolating polynomial increases.

Example 3 Consider the following function on [−1, 1]

f (x) = tan x + x3esin x+cos x .

By Figure 5, we find that this function has a root on [−0.5, 0.5]. If we apply the new method on this interval, with h = 0.1 and
linear interpolation we obtain the exact root x = 0. Even with h = 1, i.e., without dividing the interval [−0.5, 0.5], and applying
the quadratic and cubic interpolations we obtain the exact root.

Example 4 Consider the following function on interval [0, 10]

f (x) =
sin x

x
.

By Figure 5, we see that this function has three roots on [0, 10]. The results from applying the new approach with different

mesh sizes and degrees of polynomial are shown in Tables 6 and 7.

From the reported numbers in Tables 6 and 7, we see that with smaller mesh sizes and polynomials of upper degree, almost

we have more accuracy.

Example 5 Consider the following function on [−1, 1]

f (x) = sinh x − x2 tan x.

Figure 5 shows that this function has three roots on [−1, 1]. We report the obtained results using the new approach with
different mesh sizes and degrees of interpolation polynomial, in Tables 8 and 9.

Example 6 Consider the following function on [−1, 1]

f (x) = x8 − xex .

Figure 5 shows that this function has one root on this interval. In fact, as can be seen this root is x∗ = 0, but let us find it

by the new method. If we choose the interval [−0.5, 0.5] and apply the new method with h = 0.1 and the linear interpolation
polynomial we obtain the exact root x = 0. Also, by applying the quadratic and the cubic interpolation polynomials with h = 2,

i.e., without dividing the interval [−0.5, 0.5], we obtain the exact root x = 0.

Example 7 Consider the function

f (x) = ex − 1.5− tan−1 x.

By Figure 5, this function has one root on [−15,−13]. The results obtained from the new approach with different mesh sizes
and degrees of polynomial are shown in Tables 10 and 11.

Example 8 Consider

f (x) = cos x − xex + x2.

By Figure 5, this function has one root on [0, 1]. We use the new approach to estimate the root of f (x) on this interval. The

obtained results are shown in Tables 12 and 13.

Example 9 Consider

f (x) = ex − 4x2.

By Figure 5, we see that this function has one root on [0, 1]. The results obtained by executing the new approach are shown

in 14 and 15.

80 Copyright c⃝ 2022 Shahid Beheshti University. Comput. Math. Comput. Model. Appl. 2022, Vol. 1, Iss. 2, pp. 74–85



M. Dehghani-Madiseh Computational Mathematics and Computer Modeling with Applications

Table 1. Applying piecewise linear interpolation with different mesh sizes for Example 1

h root |f (root)| Time (Sec.)

1.5× 10−1 1.002481663211218 0.002478588970175 0.0028

1.5× 10−2 1.000024979425922 2.497911394083653×10−5 0.0203

1.5× 10−3 1.000000249979193 2.499791614343130×10−7 0.2009

1.5× 10−4 1.000000002499979 2.499979109488512×10−9 1.8099

1.5× 10−5 1.000000000025000 2.500000206819678×10−11 17.6776

Table 2. Applying piecewise quadratic interpolation with different mesh sizes for Example 1

h root |f (root)| Time (Sec.)

1.5× 10−1 1.000039493601601 3.949282174951934×10−5 0.0077

1.5× 10−2 1.000000041434118 4.143411727811439×10−8 0.0442

1.5× 10−3 1.000000000041826 4.182609813964359×10−11 0.3737

1.5× 10−4 1.000000000001205 1.204591981717569×10−12 3.5617

1.5× 10−5 1 0 35.3830

Table 3. Applying piecewise cubic interpolation with different mesh sizes for Example 1

h root |f (root)| Time (Sec.)

1.5× 10−1 0.999999999999695 3.048672425621144×10−13 0.0207

1.5× 10−2 0.999999999923443 7.655698297819263×10−11 0.0619

1.5× 10−3 1.000000000232823 2.328228720655940×10−10 0.5598

1.5× 10−4 1.000000000000000 2.220446049250313×10−16 5.3436

1.5× 10−5 1 0 55.3164

Table 4. Applying piecewise linear interpolation with different mesh sizes for Example 2

h roots |f (root)| Time (Sec.)

1.423265561631496 0.089857348855157

2.085090207458152 0.043855873043206

2× 10−1 2.362784447734398 1.342853250581783 0.0060

2.692741833971670 3.866860193487434

2.927695131777520 8.667198356023061

1.437936164272049 0.000818816611662

2.086273194368227 0.001679667892384

2× 10−2 2.386296798497964 0.009868611856714 0.0224

2.653422275687298 0.008924654621447

2.847288686153410 0.016193447821624

1.438063739455481 0.002751212680230×10−3
2.086319938368043 0.011813252343118×10−3

2× 10−3 2.386459407396437 0.085748864212531×10−3 0.2133

2.653510025316480 0.060326571126479×10−3
2.847404277568455 0.181016242704057×10−3
1.438064139026840 0.019411917939749×10−5
2.086320263385221 0.021609493650043×10−5

2× 10−4 2.3864608150275792 0.103479095447945×10−5 1.9957

2.653510614808365 0.077295509365305×10−5
2.847405582422813 0.022752305389728×10−5
1.438064169130111 0.014702502548758×10−7
2.086320269438054 0.001196586163488×10−7

2× 10−5 2.386460832189466 0.019510805193690×10−7 20.2828

2.653510622382446 0.077806149856308×10−7
2.847405583942465 0.169734550858891×10−7
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Table 5. Applying piecewise quadratic interpolation with different mesh sizes for Example 2

h roots |f (root)| Time (Sec.)

1.437797181022304 0.001707031316506

2.084546074022266 0.063233186629051

2× 10−1 2.387476619799538 0.061257401182087 0.0050

2.640463283820497 1.297538518530415

2.830725342456636 2.222367388420808

1.438063732633222 0.000002794872295

2.086316651178341 0.000129105420773

2× 10−2 2.386455046541641 0.000348190799036 0.0444

2.653520678318183 0.001015904881206

2.847393530777692 0.001669966232352

1.438064169514777 0.000099145913701×10−5
2.086320265358900 0.014567072026406×10−5

2× 10−3 2.386460825259738 0.041899726099803×10−5 0.4158

2.653510635012532 0.126817871154428×10−5
2.847405600550434 0.228407980967793×10−5
1.438064169365771 0.003787614666351×10−8
2.086320269437931 0.012404943738886×10−8

2× 10−4 2.386460832218397 0.020991919313929×10−8 3.9670

2.653510622463481 0.040595327099879×10−8
2.847405584041350 0.327283405932022×10−8
1.438064169358210 0.000105111475079×10−7
2.086320269437904 0.001250015646548×10−7

2× 10−5 2.386460832422985 0.121026042521066×10−7 39.7859

2.653510622466619 0.007230017140536×10−7
2.847405584290039 0.311833277533147×10−7

Table 6. Applying piecewise linear interpolation with different mesh sizes for Example 4

h roots |f (root)| Time (Sec.)

3.142372773174194 0.248258103536299×10−3
10−1 6.283392604992629 0.032991382934222×10−3 0.0026

9.424991481436488 0.022654732994280×10−3
3.141596930997303 0.136153924382458×10−5

10−2 6.283188775076487 0.055193262914768×10−5 0.0197

9.424780609967490 0.028108857064407×10−5
3.141592730427218 0.244581114683089×10−7

10−3 6.283185331222795 0.038265955385632×10−7 0.1993

9.424777979081428 0.019429686767671×10−7
3.141592653806448 0.689632920607629×10−10

10−4 6.283185307379057 0.317467029097984×10−10 1.8493

9.424777960951669 0.193415030274949×10−10
3.141592653595999 0.197529751244538×10−11

10−5 6.283185307183549 0.063070035111195×10−11 18.4089

9.424777960771102 0.018278401330503×10−11

5. Concluding remark

The problem of finding roots of a nonlinear function appears in many fields of science and engineering. In this paper, we presented

and analyzed a new approach based on partitioning an interval into some subintervals to estimate the roots of nonlinear functions.

The introduced method can be used to find the roots of a more class of nonlinear functions without computing their derivatives.

Also it can be generalized to estimate the roots of the multivariable functions in higher dimensions. The new approach is capable

to find all the roots of a function on the determined interval [a, b]. Numerical experiments showed the effectiveness of the new

approach.
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Table 7. Applying piecewise quadratic interpolation with different mesh sizes for Example 4

h roots |f (root)| Time (Sec.)

3.141591329586333 0.042144356837710×10−5
10−1 6.283191968799295 0.106022858158360×10−5 0.0048

9.424770714926494 0.076880839918186×10−5
3.141592650618887 0.945668991712094×10−9

10−2 6.283185301618809 0.885025284810616×10−9 0.0420

9.424777959907821 0.091414175184169×10−9
3.141592653590999 0.038388930783063×10−11

10−3 6.283185307199156 0.311464287833273×10−11 0.3839

9.424777960819229 0.528919989386322×10−11
3.141592653599132 0.297271946054740×10−11

10−4 6.283185307208281 0.456681346688490×10−11 3.6800

9.424777960720419 0.519485072281183×10−11
3.141592653309660 0.089169221891266×10−9

10−5 6.283185308195679 0.161716182598050×10−9 38.1534

9.424777957057623 0.393829607446302×10−9

Table 8. Applying piecewise linear interpolation with different mesh sizes for Example 5

h roots |f (root)| Time (Sec.)

-0.874961843703970 0.074328028941983

2× 10−1 0 0 0.0041

0.874961843703970 0.074328028941983

-0.901868808981154 0.282014567155153×10−3
2× 10−2 0 0 0.0205

0.901868808981154 0.282014567155153×10−3
-0.901963811046113 0.575347403941606×10−6

2× 10−3 0 0 0.2110

0.901963811046113 0.575347403941606×10−6
-0.901963989030390 0.479396948804833×10−7

2× 10−4 0 0 1.9420

0.901963989030389 0.479396951025279×10−7
-0.901964005033055 0.520149034954898×10−9

2× 10−5 0 0 20.2546

0.901964005033055 0.520148812910293×10−9

Table 9. Applying piecewise quadratic interpolation with different mesh sizes for Example 5

h roots |f (root)| Time (Sec.)

-0.901884158789132 0.236551396225027×10−3
2× 10−1 0 0 0.0043

0.901884158789130 0.236551396230356×10−3
-0.901965239910942 0.365871711127674×10−5

2× 10−2 0 0 0.0421

0.901965239910932 0.365871707974641×10−5
-0.901964004925138 0.839932567942014×10−9

2× 10−3 0 0 0.4002

0.901964004924705 0.841215319624666×10−9
-0.901964005207871 0.212940776123105×10−11

2× 10−4 0 0 3.8387

0.901964005207788 0.237387887125351×10−11
-0.901964005221988 0.397042398958547×10−10

2× 10−5 0 0 40.7914

0.901964005195030 0.401794153503943×10−10
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Table 10. Applying piecewise linear interpolation with different mesh sizes for Example 7

h root |f (root)| Time (Sec.)

2× 10−1 -14.101974620425656 3.526252680741138×10−6 0.0038

2× 10−2 -14.101271449371303 8.388364003408810×10−9 0.0209

2× 10−3 -14.101269838105679 3.270315129810797×10−10 0.2110

Table 11. Applying piecewise quadratic interpolation with different mesh sizes for Example 7

h root |f (root)| Time (Sec.)

2× 10−1 -14.101269709928433 -3.142528459676441×10−10 0.0087

2× 10−2 -14.101269773764367 5.125011526274648×10−12 0.0443

2× 10−3 -14.101269772742056 1.043609643147647×10−14 0.3964

Table 12. Applying piecewise linear interpolation with different mesh sizes for Example 8

h root |f (root)| Time (Sec.)

10−1 0.637295803823317 0.004498320539004 0.0030

10−2 0.639148010047697 1.475432710396074×10−5 0.0201

10−3 0.639153994091137 2.478527552085552×10−7 0.2178

Table 13. Applying piecewise quadratic interpolation with different mesh sizes for Example 8

h root |f (root)| Time (Sec.)

10−1 0.639165394620634 2.738960439940819×10−5 0.0069

10−2 0.639154082455807 3.363874623296681×10−8 0.0432

10−3 0.639154096351640 4.759215244121151×10−11 0.3996

Table 14. Applying piecewise linear interpolation with different mesh sizes for Example 9

h root |f (root)| Time (Sec.)

10−1 0.713846233005084 0.003523749696264 0.0046

10−2 0.714785689013024 7.431266240054413×10−5 0.0185

10−3 0.714805785523238 4.660917953813737×10−7 0.2891

Table 15. Applying piecewise quadratic interpolation with different mesh sizes for Example 9

h root |f (root)| Time (Sec.)

10−1 0.714801687027082 1.552660761339197×10−5 0.0066

10−2 0.714805911913587 1.650623637772242×10−9 0.0435

10−3 0.714805912367387 1.693667428526169×10−11 0.3792
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