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Numerical investigation of differential
biological models via Gaussian RBF
collocation method with genetic strategy
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In this paper, we use radial basis function collocation method for solving the system of differential equations in the area of

biology. One of the challenges in RBF method is picking out an optimal value for shape parameter in Radial basis function

to achieve the best result of the method because there are not any available analytical approaches for obtaining optimal

shape parameter. For this reason, we design a genetic algorithm to detect a close optimal shape parameter. The population

convergence figures, the residuals of the equations and the examination of the ASN2R and ARE measures all show the

accurate selection of the shape parameter by the proposed genetic algorithm. Then, the experimental results show that this

strategy is efficient in the systems of differential models in biology such as HIV and Influenza. Furthermore, we show that

using our pseudo-combination formula for crossover in genetic strategy leads to convergence in the nearly best selection

of shape parameter. Copyright c⃝ 2022 Shahid Beheshti University.
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1. Introduction

In the past few years, various mathematical models have been used to investigate biological and clinical problems. Various

examples of mathematical models have been presented hitherto, including HIV [59, 60], Influenza [37], Covid-19 [76, 66] and

Ebola [10, 3]. In this paper, we will focus specifically on the simulation of HIV and Influenza models using the combination of

RBF method and genetic algorithm and we show that this method is very efficient and robust for simulating biological models.

1.1. HIV Infection CD4+T Cells

Acquired Immune Deficiency Syndrome (AIDS), first-time appeared in the continent of America in 1981 [9]. The human

immunodeficiency Virus (HIV) in short HIV is the cause of the illness that attacks vital cells such as Dendrite cells, helper

lymphocyte particularly CD4+T cells and infects them and gradually, the immune system will be destroyed [14]. This process

may take from 6 months to 10 years. The mathematical model of HIV-infected CD4+T cells described by Perelson and Nelson

in 1991 [59, 60]. HIV model investigates the concentration of susceptible CD4+T cells infected by the HIV viruses. It is obvious

that presenting a mathematical model is an easier study of the behavior of the system and helps the process of detecting or

improving disease. Let T(t) be the concentration of susceptible CD4+T cells, I(t) be CD4+T cells infected by the HIV virus

and V(t) be free HIV particular in the blood at the time. Thus, the mathematical model of the HIV-infected CD4+T cell on a
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couple system of the ordinary differential equation will be presented as follows:
d

dt
T(t) = s − αT(t) + rT(t)(1− T(t) + I(t)

Tmax
)− kV(t)T(t), T(0) = T0,

d

dt
I(t) = kV(t)T(t)− β I(t), I(0) = I0, 0 ≤ t ≤ R ≤ ∞

d

dt
V(t) = NβI(t)− γV(t), V(0) = V0,

(1)

where R is a positive constant and other parameters have been shown in Table 1.

Table 1. Parameters in HIV infected CD4+T cells model

α Natural turnover rates of uninfected T cells

β Infected T cells

γ Virus particles

k Infection rate

s Rate of constructing T cells

r Rate of T cells mitoses

N Virus particle from each infected T cell

Tmax Maximum T cell concentration in the body

It is noteworthy that there is no exact solution for HIV model. Ergo, the numerical methods are used to solve it. Table 2

shows some approaches applied to this model.

Table 2. Used technique for solving HIV model

Author(s) Method Year

Merdan [45] Homotopy Perturbation method(HPM) 2007

Alomari et al. [24] Homotopy Analysis method(HAM) 2011

Merdan et al. [46] Variational Iteration Method(VIM) 2011

Ongun [50] Laplace Adomian Decomposition Method(LADM) 2011

Doğun [17] Multistep Laplace Adomian Decomposition Method(MLADM) 2012

Khan et al. [41] Iterative Homotopy Perturbation Transform Method(IHPTM) 2012

Yüzbaşi [80] Bessel Collocation Method(BCM) 2012

Atangana et al. [5] Homotopy Decomposition Method(HDM) 2014

Chen [11] Padé-Adomian Decomposition Method(PADM) 2015

Venkatesh et al. [75] Legendre Wavelets Method(LWM) 2016

Kajani et al. [23] Müntz-Legendre Method(MLM) 2016

El-Baghdady et al. [18] Legendre Collocation Method(LCM) 2017

Parand et al. [54] Shifted Lagrangian Jacobi Method (SLG) 2018

Parand et al. [53] Quasilinearization-Lagrangian Method (QLM) 2018

Parand et al. [55] Pseudospectral Legendre Method (PLM) 2018

Parand et al. [58] Shifted Boubaker Lagrangian Method (SBLM) 2018

Parand et al. [56] Shifted Chebyshev Polynomial Method (SCP) 2019

Umar et al. [73] Genetic Algorithm Active Set Method (GA-ASM) 2020

Attaulah et al. [69] continuous GalerkinPetrov (cGP) 2020

Attaulah et al. [69] Legendre Wavelets Collocation Method (LWCM) 2020

Oluwaseun et al. [49] Block Method (BM) 2021

Thirumalai et al. [72] Spectral Collocation Method (SCM) 2021

Umar et al. [74] Neuro Swarm Intelligent Computing (NSIC) 2021

Hassani et al. [30] Generalized Shifted Jacobi Polynomials (GSJP) 2022

Ghosh et al. [25] New Iterative Method (NIM) 2022

1.2. Influenza

Influenza virus causes a type of disease named Influenza or Flu that is divided into four classes A, B, C and D [44]. From the

perspective of the epidemic, class A is the most significant class. That is because this type is able to merge and rebuild its

genes with host gene [4, 77]. The mathematical model of Susceptible-Infected-Removed (SIRC) for displaying the outbreaks of

Influenza in population is defined by Kermack and McKendrick [37]. This is a system of the differential equation as follows:
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d

dt
S(t) = µ(1− S(t))− βS(t)I(t)− γC(t) S(0) = S0,

d

dt
I(t) = βS(t)I(t) + σβC(t)I(t)− (µ+ θ)I(t), I(0) = I0,

d

dt
R(t) = (1− σ)βC(t)I(t) + θI(t)− (µ+ δ)R(t), R(0) = R0,

d

dt
C(t) = δR(t)− βC(t)I(t)− (µ+ γ)C(t) C(0) = C0.

(2)

where S(t), I(t),R(t) and C(t) mean ratio susceptible, infections, recovered and cross immune respectively. Other parameters

are shown in Table 3. This model studied by Khader et al. [39] using Chebyshev spectral method in 2014. Table 4 shows the

Table 3. Parameters in Flu model

µ Mortality rate

θ Improve infection each year

δ Progression from recovered to cross-immune each year

γ Progression from recovered to susceptible each yer

σ Rate of cross-immune into the infective

β Contact rate

applying methods to SIRC model.

Table 4. Used techniques for solving SIRC model

Author(s) Method Year

El-Shahed et al. [19] Non-standard Finite Difference(NSFDM) 2012

Ibrahim et al. [34] Modified differential transform method(MDTM) 2013

Zeb et al. [81] Multi-step generalized differential transform method(MGDTM) 2013

Khader et al. [39] Chebyshev spectral method(CSM) 2014

Khader et al. [38] Legendre spectral method(LSM) 2014

González-parra et al. [28] Grünwald Letnikov method(GLM) 2014

Jaber-Mohammad et al. [48] Runge-kutta 45 (RK45) 2020

Sabir et al. [63] Genetic Algorithm Active-Set Method (GA-ASM) 2021

Sabir et al. [64] Artificial Neural Network (ANN) 2022

Sabir et al. [65] Morlet wavelet Neural Network (MWNN) 2022

1.3. Meshfree Method

Firstly, the Meshfree methods introduced by Monaghan and Gingold in 1977. They enlarged a Lagrangian method according

to Kernel estimate method [26]. A number of meshfree methods such as smoothing particle hydrodynamic (SPH) [70, 12],

Element-Free Galerkin (EFG) [42, 8], Reproducing Kernel method (RKM) [1, 7], Meshless local Petrov-Galerkin (MLPG) [61, 6],

Comapctly supported radial basis function method(CSRBF) [32, 40], Radial basis function finite difference method(RBFFD)

[47, 31], Radial basis function differential quadrature method(RBF-DQ) [52, 51] and Kansa method (KM) [57, 68] are used

for solving differential equations (DEs). The appearance of meshfree methods was through the difficulty of the classic methods

such as Finite Element method (FEM) [71, 35] and Finite Difference method (FDM) [16, 15] which require a mesh of points

for solving problems. In these methods, rising problem dimensions causes increasing complexity (the order of construction of

the mesh); furthermore, in meshfree we have no need to make any grid, and scattered points are used instead. RBF method

as a meshfree approach utilizes as Trial functions of kind (Global/Compact support) Radial basis functions (RBFs)Table 5

demonstrates the RBF types. The main advantages of RBF method are the simplicity, high accuracy, and capability of being

applicable in high dimension problems. In addition to these advantages, there exist two main challenges that all methods based

on RBFs are faced with; selecting Shape parameters (SP) and distribution of collocation points. Choosing an inappropriate SP

decreases the performance of method or even it will be unusable when the method is ill-conditioned. It seems that amount of

optimal Shape parameter (oSP) depends on equation state, dimension and etc. Thus, any comprehensive formula not found

hitherto for recognizing optimal SP in RBFs. Instead of choosing a proper SP, Many researchers offered different formulas;

however, these formulas are applicable only in some special cases. In [43] SP decomposed to a dimensionless size of support

domain (αs) and a nodal spacing near the point at the center (dc), where c = αsdc . Hardy [29] suggested using (inverse)

multiquadric formula as follows:

c =
1

0.815ε
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Table 5. Some radial basis functions cψ, (r = ∥x − xi∥ = ri), c > 0

Class Name of function Definition

1 Multiquadrics(MQ)
√
r 2 + c2

Inverse Multiquadrics (IMQ) 1√
r2+c2

Gaussian (GA) exp(−c2r 2)
Inverse Quadrics (IQ) 1

r2+c2

Hyperbolic Secant (sech) sec h(c
√
r)

2 Thin Plate Spline (TPS) (−1)k+1r 2k log(r)
Conical Spline r 2k+1

3 Wendland3,0 (1− r)2+
Wu3,3 (1− r)4+(16 + 29r + 20r 2 + 5r 3)
Oscillator1,3 (1− r)4+(1 + 4r − 15r 2)
Buhman1 12r 4 log r − 21r 4 + 32r 3 − 12r 2 + 1

4 Plattea,b,c cos(cr) exp( −b
(1−r2)a + b)

where ε = 1
N
ΣNi=1εi , and εi is the distance of the center from its closest neighbor. Rippa [62] used the Predictive residual sum

of square (PRESS) algorithm for calculating a proper SP. Leave on-out cross validation (LOOCV) approach [22]and Craven

and Wahba [13] which emanated in the statistics literature used for finding optimal SP. Esmaeilbeigi et al. [2, 20] employed

the genetic package of MATLAB for solving a number of DEs. The following formula is proposed in [36, 67] to calculate a

reasonable SP

ci =

√
c2α(

c2β
c2α
)
i−1
n−1

where n is the number of points and cα is the smallest and cβ is the biggest selected parameter in the domain of candidate SPs.

Similarly, in [67, 79] the SP is obtained by

ci = cα + (cβ − cα)∆rand ,
where ∆rand is a random number in arbitrary domain.

In this paper, we suggested a Meta-heuristic continues Genetic algorithm (CGA) choose a near optimal SP, based on the

average of summation of the residual 2-norm (ASN2R) and the average of summation of the relative error (ARE) for the solution

of differential equation systems in Biology sciences.

1.4. Genetic Algorithm

Genetic algorithm (GA) is a search and optimization approach based on the Genetic principles and natural selection. A GA starts

with processing a population of candidate solutions (called individuals or chromosomes) with different competencies. During this

process (called evolution), GA changes the population and generates some solutions close to optimal competency (maximum

benefit or minimum cost). John Holland invented original GA in the early 1970s [33]. He also proposed a theoretical basis for

GA according to the Type theory. In the following, David E Goldberg [27] extended GA concept and applied it to encode and

solve different problems in miscellaneous fields. GA has many advantages over other optimization methods like:

• Practicable on both discrete and continuous data,
• No need to derivative of objective function (fitness function),
• Usable in multivariate functions,
• High potential for parallelization,
• Calculating a set of appropriate (close to optimal) solutions,
• Expandable on experimental, analytical and numerical data.

The main objective of a meta-heuristic algorithm is finding a close-minimum to global minimum (maximum) solution by

escaping from local minimum (maximum) solutions. Universally, GA is classified to DGA (Discrete GA) and CGA (Continuous

GA). In this article, we use CGA to find a close to optimal SP (near-optimal Shape parameter) around a specified interval in the

RBF method, where ϱ is either ASRN2 or ARE strategies.

2. Methodology

2.1. RBF approximation

Let ψ : R+ → R be a continuous function with cψ(0) ≥ 0. A radial basis function on Rd is a function of the form

cψ(∥x − xi∥),
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where x ,xi ∈ Rd and ∥.∥ denote the Euclidean distance between x and xis. By choosing N points {xi}Ni=1 in Rd and by defining

s(x) =

N∑
i=1

ξi cψ(∥x − xi∥); ξi ∈ R,

where s(x) is called a radial basis functions mesh [78, 21]. To approximate one-dimensional function f (x), we can illustrate it

with an RBF as

f (x) ≈ fn(x) =
N∑
i=1

ξi cψi(x) = ⃗
cΨ
T
(x)Ξ⃗, (3)

in which,

cψi(x) = cψ(∥x − xi∥),
⃗
cΨ
T
(x) = [ cψ1(x), cψ2(x), · · · , cψN(x)],

Ξ⃗ = [ξ1, ξ2, · · · , ξN ],

x is the input and ξis are the collection of coefficients to be determined. By selecting N points (xj , j = 1, 2, · · · , N) in interval:

fj(x) = ⃗
cΨ
T
(xj)Ξ⃗

To sum up the discussion of the coefficients matrix, we define

a
M Ξ⃗ = F⃗ , (4)

where

F⃗ = [f1, f2, · · · , fN ]T

a
M = [ ⃗cΨ

T
(x1), ⃗cΨ

T
(x2), · · · , ⃗cΨ

T
(xN)]

T

(5)

By solving the system(4), the unknown coefficients Ξ⃗ will be attained.

2.2. Solving models by RBF method

Both models are system of first-order differential equations, so we define the solution functions and it’s first-order derivatives

as follows:

U(t) ≃ UN(t) =
N∑
i=0

a#i cψi(t), (6)

dU(t)

dt
≃ dUN(t)

dt
=

N∑
i=0

a#i cψ
′
i(t). (7)

where cψ is RBF. In addition, solution function U(t) and unknown coefficient a# are also defined separately according to the

unknown functions of the models as follows

T (t) ≃ Tn(t) =
n∑
i=0

a1i cψi(t), (8)

I(t) ≃ In(t) =
n∑
i=0

a2i cψi(t), (9)

V (t) ≃ Vn(t) =
n∑
i=0

a3i cψi(t), (10)

for HIV and

S(t) ≃ Sn(t) =
n∑
i=0

a1i cψi(t), (11)

I(t) ≃ In(t) =
n∑
i=0

a2i cψi(t), (12)

R(t) ≃ Rn(t) =
n∑
i=0

a3i cψi(t), (13)

C(t) ≃ Cn(t) =
n∑
i=0

a4i cψi(t), (14)
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for Influenza model. Similarly, we define it’s derivative according to the Eq.(7). By placing the solution functions in the 1 and 2

equations, we form the residual functions for each system of equations as follows.

Res1(t) =
d
dt
Tn(t) + αTn(t)− rTn(t)(1− Tn(t)+In(t)

Tmax
) + kVn(t)Tn(t)− s, (15)

Res2(t) =
d
dt
In(t)− kVn(t)Tn(t) + βIn(t), (16)

Res3(t) =
d
dt
Vn(t)− nβIn(t) + γVn(t), (17)

for HIV and

Res1(t) =
d
dt
Sn(t)− µ(1− Sn(t)) + βSn(t)In(t) + γCn(t), (18)

Res2(t) =
d
dt
In(t)− βSn(t)In(t)− σβCn(t)In(t) + (µ+ θ)In(t), (19)

Res3(t) =
d
dt
Rn(t)− (1− σ)βCn(t)In(t)− θIn(t) + (µ+ δ)Rn(t), (20)

Res4(t) =
d
dt
Cn(t)− δRn(t) + βCn(t)In(t) + (µ+ γ)Cn(t), (21)

for Influenza.

We will simulate the problem in the domain (0, 1], and for this purpose we will choose the n points t = t1, · · · , tn within the
domain, where we have used equidistant points. By placing the n points in the residual functions and adding the initial conditions

(IC#) as follows

IC1HIV = Tn(0)− T0, (22)

IC2HIV = In(0)− I0, (23)

IC3HIV = Vn(0)− V0, (24)

IC1Inf luenza = Sn(0)− S0, (25)

IC2Inf luenza = In(0)− I0, (26)

IC3inf luenza = Rn(0)− R0, (27)

IC4inf luenza = Cn(0)− C0. (28)

We obtain 3(n + 1) algebraic nonlinear equations for HIV model , as well as 4(n + 1) algebraic nonlinear equations for Influenza

model as follows

RESHIV = (Res1(t1), · · · , Res1(tn), Res2(t1), · · · , Res2(tn), Res3(t1), · · · , Res3(tn), IC1HIV , IC2HIV , IC3HIV )3(n+1), (29)
RESInf luenza = (Res1(t1), · · · , Res1(tn), Res2(t1), · · · , Res2(tn), Res3(t1), · · · , Res3(tn),

Res4(t1), · · · , Res4(tn), IC1Inf luenza, IC2Inf luenza, IC3Inf luenza, IC4Inf luenza)4(n+1), (30)

and finally for obtaining unknown coefficients, we solve these algebraic equations by Newton-Raphson method.

2.3. Genetic algorithm to find optimal shape parameter

GA as a meta-heuristic approach employed for optimization and finding the optimal parameter in problems. In fact, solving a

problem by GA includes designing some functions and subroutines which be fired in each iteration (evolution). The main required

functions and subroutines are Fitness function, Selection, Crossover, and mutation. However, more detailed explanation of GA

is as follows:

1. Generating an initial population (chromosomes): The algorithm utilizes a population-based structure to solve the

problem. Thus it is necessary to pick out an initial population from the solution domain and start the evolution.

Generating the initial population is usually done by a uniformly random distribution. The commands ”sample(’Uniform’(Ωa,

Ωb),#points)” from the library ”Statistics” of Maple and ”rand(#points)” in Matlab generate the mentioned population.

2. Fitness function: In fitness function, the competency of each chromosome is investigated. The fitness of each individual

is typically a numerical value. According to the nature of the problem, we assume that the minimum cost is zero and

define our fitness function as:

exp(
1

1 + Θ
)

where Θ is ASN2R (
∑3
i=1 ∥Resi ∥2
3 ) in HIV problem and ARE (

∑N
i=1 |ui−uRKF |

N
) in SIRC model.

3. Parental selection: GA is an iterative process, with the population in each iteration called a generation. The more

fit individuals (parents) are stochastically selected from the current population, and modified (recombined and possibly

randomly mutated) to form a new generation (children). Then the new generation of candidate solutions are used in the

next iteration of the algorithm. Our method for selecting parents is based on the fitness function and Roulette wheel

technique (RWT). In RWT, the chance of an individual to be chosen as a parent has a direct relationship with its fitness

value.
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4. Crossover: When two individuals are selected as parents, the crossover subroutines combine them to produce a new

individual (their child). In this regard, we define a crossover formula called ”Pseudo-combination” (PCF). The PCF

produces a child based on the value and fitness of its both parents. We define PCF as follows:

d =
a + b

2
+ sign(b − a)(|b − a + b

2
+ sign(b − a)ε|) |f (a)|

α − |f (b)|α

|f (a)|α + |f (b)|α

where d, a, b, ε and α parameters are child, first parent, second parent, outer limit and strongly inclination, respectively.

The convergence of this PCF can be shown by taking the limit under different conditions as follows

(a) If |f (b)|α < |f (a)|α and a < b so

lim|f (b)|→0 d =
a+b
2
+ sign(b − a)(|b − a+b

2
+ sign(b − a)ε|) |f (a)|

α

|f (a)|α =

a+b
2
+ sign(b − a)(|b − a+b

2
+ sign(b − a)ε|)

because a < b so b − a+b
2 > 0

a+b
2
+ sign(b − a)(|b − a+b

2
+ sign(b − a)ε|) =

a+b
2
+ (b − a+b

2
+ ε) = b + ε

lim|f (b)|→0 d = b + ε.

(b) If |f (b)|α < |f (a)|α and a > b so b − a+b
2
< 0

a+b
2
+ sign(b − a)(|b − a+b

2
+ sign(b − a)ε|) =

a+b
2
− (−b + a+b

2
+ ε) = b − ε

lim|f (b)|→0 d = b − ε.

(c) If |f (b)|α > |f (a)|α and a < b so

lim|f (a)|→0 d =
a+b
2
+ sign(b − a)(|b − a+b

2
+ sign(b − a)ε|)−|f (b)|

α

|f (b)|α =

a+b
2
− sign(b − a)(|b − a+b

2
+ sign(b − a)ε|)

because a < b so b − a+b
2
> 0

a+b
2
− sign(b − a)(|b − a+b

2
+ sign(b − a)ε|) =

a+b
2
− (b − a+b

2
+ ε) = a − ε

lim|f (a)|→0 d = a − ε.

(d) If |f (b)|α > |f (a)|α and a > b so b − a+b
2
< 0

a+b
2
− sign(b − a)(|b − a+b

2
+ sign(b − a)ε|) =

a+b
2
+ (−b + a+b

2
+ ε) = a + ε

lim|f (a)|→0 d = a + ε.

(e) If |f (b)|α = |f (a)|α so

lim
|f (a|b)|→0

d =
a + b

2
.

5. mutation: In mutation operation, some chromosomes are chosen randomly (according to the mutation rate) and one digit

of each chromosome is replaced with a random digit. Considering elitism, we guard top three chromosomes (based on

their fitness) against mutation.

Algorithm (1) presents a general form of the proposed GA.

3. Result

In this section, we set ε=0.02, α = 0.016 mutation=0.2 and el it=3, and solve the HIV(1) and Influenza SIRC(2) models. We

used Maple 2015 for solving these models. The hardware configuration was as follows:

OS : Windows 10 (64bit)

CPU : Corei7 2.8 GHZ

RAM : 12 GB DDR3.
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Algorithm 1: GA-RBF method

1 Initial random feasible population: pop ← {c1, c2, · · · , cN}
2 WHILE (iteration condition)

3 RBF method computes ASN2R (or ARE) for population

4 Fitness ← exp( 1
1+ASN2R(orARE)

)

5 Sorting the population : ∀ci , cj ∈ pop, i < j ⇐⇒ F itness(ci) > F itness(cj)

6 Elitism : pop′ ← {c1, c2, · · · , cel it}
7 FOR i = el it + 1 to N

8 {p1, p2} ← ParentalSelection(pop)

9 c ′i ← PCF (p1, p2)

10 c ′′i ← Mutation(c ′i )

11 pop′ ← pop′ ∪ {c ′′i }
12 END FOR

13 pop ← pop′

14 END WHILE

3.1. HIV

In HIV model by selecting α = 0.02, β = 0.3, γ = 2.4, r = 3, k = 0.0027, Tmax = 1500, s = 0.1, N = 10, T0 = 0.1, V0 = 0.1

and I0 = 0, we approximate target functions with the classic Gaussian function and apply the average of residual functions to

the fitness function. Figures 1 and 2 show given target function and residual function plots from 20 collocation points for T(t),

I(t) and V(t).

(a) T(t)

(b) I(t) (c) V(t)

Figure 1. Plots of T (t), I(t), V (t) for N = 20

Tables 6,7 and 8 illustrates the comparison of the presented method (with 20 collocation points) with approximated results

of Bessel Collocation method (BCM) [80], Runge-Kutta method (RKM) [80], Homotopy Decomposition method (HDM) [5]
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(a) ResT (t)

(b) ResI(t) (c) ResV (t)

Figure 2. Plots of residual T (t), I(t), V (t) for N = 20

and Wavelet Legendre method (WLM) [75]. The results show that the presented method and Runge-Kutta method are equal

up to eight decimal places.

Table 6. Numerical results for T (t)

t BCM RKM HDM LWM cGP Present method for N=20

0.2 0.2038616561 0.2088080833 0.2088072731 0.2088073215 0.208806496 0.2088080843

0.4 0.3803309335 0.4062405393 0.4061052625 0.4061245634 0.406234784 0.4062405427

0.6 0.6954623767 0.7644238890 0.7611467713 0.7641476415 0.764408244 0.7644238985

0.8 1.2759624442 1.4140468310 1.3773198590 1.3977746217 1.414009061 1.4140468518

1.0 2.3832277428 2.5915948020 2.3291697610 2.5571462314 2.591509458 2.5915948516

Table 7. Numerical results for I(t)

t BCM Runge-Kutta HDM LWM cGP Present method for N=20

0.2 0.6247872e-5 0.6032702e-5 6.0327072e-5 0.6032704e-5 0.60325e-5 0.6032702e-5

0.4 0.1293552e-4 0.1315834e-4 1.3159161e-4 0.1316784e-4 0.13158e-4 0.1315834e-4

0.6 0.2035267e-4 0.2122378e-4 2.1268368e-4 0.2112628e-4 0.21223e-4 0.2122378e-4

0.8 0.2837302e-4 0.3017741e-4 3.0069186e-4 0.2998139e-4 0.30177e-4 0.3017742e-4

1.0 0.3690842e-4 0.4003781e-4 3.9873654e-4 0.3287654e-4 0.40037e-5 0.4003781e-4

Figures 3 and 4 show the residual functions. We used the uniform distribution library of Maple and generate 20 chromosomes

as GA initial population in search domain (0.1 , 5). The GA population collected on the smaller range after 20 iterations:

5 collocation points (0.1 , 5)−→(0.15 , 0.45)
10 collocation points (0.1 , 5)−→ (0.3 , 0.59)
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Table 8. Numerical results for V (t)

t BCM Runge-Kutta HDM LWM cGP Present method for N=20

0.2 0.0618799185 0.0618798433 0.0618799602 0.0618799076 0.061879980 0.0618798432

0.4 0.0382949349 0.0382948878 0.0383132488 0.0383234157 0.038295057 0.0382948877

0.6 0.0237043186 0.0237045501 0.0243917434 0.0238109873 0.023704707 0.0237045500

0.8 0.0146795698 0.0146803637 0.0099672189 0.0162138976 0.014680493 0.0146803636

1.0 0.0237043186 0.0091008450 0.0033050764 0.0160504423 0.009100944 0.0091008449

15 collocation points (0.1 , 5)−→(0.45 , 0.75)
20 collocation points (0.1 , 5)−→(0.74 , 0.95).

Figure 5 shows the condition of ASN2R based on the SP in the domain (0.1, 5). The optimal SP for 5 collocation points is

in the domain (0.12, 0.35) and for 15 collocation points is in the domain (0.2, 0.8).

(a) N=5 (b) N=10

(c) N=15 (d) N=20

Figure 3. Initial population for SP domain

Obviously, by increasing the number of iterations in GA, in the case of the uniqueness of the optimal point, the final range

will be limited again. Table 9 represents changes in the results and residuals by changing the number of collocation points. It

can be seen that the results remained stable in 15 and 20 points.

In Fig. (6) and Fig. (7) display the average of value population (AVP) and the average of the residual population (ARP). After

a number of steps, the AVP tended to a nonzero value, likewise, the ARP disposed to zero which indicates the convergence and

productivity of our Genetic strategy.

3.2. Influenza

In this model, we applied the Gaussian function with a minor change as follows

cψ = exp(−ηr 2) η =
√
(c2), (31)
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(a) N=5 (b) N=10

(c) N=15 (d) N=20

Figure 4. Total population for SP domain in latest iteration

(a) N = 5 (b) N = 15

Figure 5. ASN2R condition based on Shape parameter

Moreover, the GA population is 200 randomly selected points from the real domain (1, 200). We used Maple’s DSOLVE tool

for calculating the fitness of chromosomes and compared our results with Runge-Kutta-Fehlberg (RKF) method. By selecting

µ = 0.02, β = 100, δ = 1, γ = 0.5, σ = 0.05, θ = 73, S0 = 0.8, I0 = 0.1, R0 = 0.05 and C0 = 0.05, four target functions

have been obtained from 60 collocation points whose plots are shown in Fig.(8). In addition, in Fig. (9), treatment of functions

for 20, 40 and 60 collocation points are considered. Initial and total population are presented in Fig. (10) and Fig. (11).

When we set the number of collocation points to 20, 40 and 60, the final generation collected in ranges (22, 28), (100, 140)

and (120, 150) respectively. Furthermore, convergence of APN to a nonzero value is searchable in Fig.(13). Figure 12 shows

the condition of ARE based on the SP selected from the domain (1, 200). For 20 collocation points, the optimal SP is in the
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Table 9. Numerical comparison for N = 5, 10, 15, 20 in best SP

t N=5 Res N=10 Res N=15 Res N=20 Res

c=0.21635819 c=0.33489998 T(t) c=0.51637831 c=0.77428513

0.2 0.2141496490 3.86e-03 0.2088094672 7.82e-06 0.2088080843 2.60e-13 0.2088080843 3.96e-17

0.4 0.3996040883 1.31e-01 0.4062432618 7.24e-07 0.4062405427 1.68e-13 0.4062405427 4.87e-17

0.6 0.7116524148 1.34e-01 0.7644289795 4.05e-07 0.7644238985 1.55e-13 0.7644238985 4.65e-17

0.8 1.2973641582 4.31e-03 1.4140559835 6.47e-07 1.4140468518 3.61e-13 1.4140468518 7.23e-17

1.0 2.3892259227 5.66e-92 2.5916114131 1.94e-84 2.5915948516 3.17e-80 2.5915948516 8.88e-78

I(t)

0.2 0.6114687e-5 2.27e-09 0.6032719e-5 2.46e-11 0.6032702e-5 3.42e-18 0.6032702e-5 4.46e-21

0.4 0.1337344e-4 8.34e-07 0.1315841e-4 5.26e-14 0.1315834e-4 6.28e-18 0.1315834e-4 3.71e-21

0.6 0.2134401e-4 1.13e-06 0.2122391e-4 6.30e-13 0.2122378e-4 5.06e-18 0.2122378e-4 1.09e-21

0.8 0.2987347e-4 3.22e-08 0.3017760e-4 1.60e-12 0.3017742e-4 7.01e-19 0.3017742e-4 6.41e-22

1.0 0.3908961e-4 6.10e-96 0.4003806-4 4.41e-89 0.4003781e-4 9.99e-85 0.4003781e-4 1.45e-81

V(t)

0.2 0.0618187051 6.80e-05 0.0618798524 6.92e-08 0.0618798432 4.57e-14 0.0618798432 5.14e-17

0.4 0.0384572762 2.28e-03 0.0382948935 6.31e-09 0.0382948877 7.37e-14 0.0382948877 4.08e-17

0.6 0.0242145096 2.31e-03 0.0237045544 3.49e-09 0.0237045500 7.32e-14 0.0237045500 1.22e-17

0.8 0.0151695545 7.31e-05 0.0146803662 5.55e-09 0.0146803636 4.63e-14 0.0146803636 1.00e-17

1.0 0.0093128300 3.10e-93 0.0091008467 2.11e-86 0.0091008449 6.50e-82 0.0091008449 4.10e-79

(a) N=5 (b) N=10

(c) N=15 (d) N=20

Figure 6. Average of population value in iterations

domain (20, 30) and for 40 collocation points is in the domain (100, 160).

Eventually, Tab.(10) displays the comparison of the proposed method (for 20, 40 and 60 collocation points) with RKF method.

It shows that our results converge to the RKF method by increasing the number of collocation points.
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(a) N=5 (b) N=10

(c) N=15 (d) N=20

Figure 7. Average of population fitness in iterations

Figure 8. Plots for SIRC model

4. Conclusion

In this study we have proposed an approximation technique to solve biological equations.The method is based on the collocation

method and Gaussian radial basis function. We used a Genetic strategy to overcome the challenge of searching optimal Shape

parameters in RBF method. Additionally we tested ASN2R for HIV and ARE for SIRC model in fitness function and a new
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(a) S(t) (b) I(t)

(c) R(t) (d) C(t)

Figure 9. Gained plots for N = 20, 40, 60

crossover formula called Pseudo-combination defined for using the considered GA. The obtained results show that the proposed

genetic algorithm has well identified the optimal shape parameter. Finally, we showed that our approach is applicable and accurate

for the solving system of the differential equations such as HIV and Influenza models.
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(a) N = 60

(b) N = 40 (c) N = 20

Figure 10. Initial population for SP domain

Table 10. Runge-Kutta-Fehlberg and RBF method results with N = 20, 40, 60

RKFM Presented method 20N Presented method 40N Presented method 60N Relative error 60N

S(t)

c - 26.800747761 137.9078869 123.44438040 -

0.2 0.4129967652 0.4270195495 0.4098921081 0.4128015008 1.952644e-04

0.4 0.4280199934 0.4363880004 0.4246103505 0.4278128844 2.071090e-04

0.6 0.4502002535 0.4549500702 0.4463055244 0.4499962534 2.040001e-04

0.8 0.4765242244 0.4766921230 0.4719383037 0.4763283175 1.959069e-04

1.0 0.5054118548 0.5003541451 0.5001004305 0.5052268175 1.850373e-04

I(t)

c - 26.800747761 137.9078869 123.44438040 -

0.2 7.340828e-04 1.396989e-03 7.051238e-04 7.534934e-04 0.194106e-04

0.4 1.675623e-06 8.708980e-06 1.566126e-06 1.806640e-06 1.310170e-07

0.6 2.525609e-09 8.678259e-08 4.611322e-09 -1.672634e-09 4.198243e-09

0.8 9.855557e-10 -3.67796e-07 -2.23659e-09 -1.066306e-09 2.0518617e-09

1.0 -7.72143e-10 -2.21603e-05 -1.428391e-09 -3.324845e-08 3.2476307e-08

R(t)

c - 26.800747761 137.9078869 123.44438040 -

0.2 0.4886071026 0.4886065768 0.4957432281 0.4884197981 1.873045e-04

0.4 0.4001052933 0.4061157789 0.4061422515 0.3999667848 1.385085-e04

0.6 0.3262752258 0.3313413846 0.3312018206 0.3261621289 1.130969e-04

0.8 0.2660651578 0.2702079076 0.2700828333 0.2659730573 9.210050e-05

1.0 0.2169661278 0.2203903869 0.2202819063 0.2168965849 6.954290e-05

C(t)

c - 26.800747761 137.9078869 123.44438040 -

0.2 0.0976620493 0.9008003610 0.0990852949 0.0975773248 8.472450e-05

0.4 0.1718730376 0.1556924837 0.1741092475 0.1717627291 1.103085e-04

0.6 0.2235245180 0.2019667950 0.2263417601 0.2233978645 1.266535e-04

0.8 0.2574106166 0.2323192884 0.2606042265 0.2572747238 1.358928e-04

1.0 0.2776220180 0.2504052565 0.2810922415 0.2774868004 1.352176e-04
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(a) N = 60

(b) N = 40 (c) N = 20

Figure 11. Total population for SP domain

(a) N = 20 (b) N = 40

Figure 12. ARE condition based on Shape parameter
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(a) N = 60

(b) N = 40 (c) N = 20

Figure 13. Average of population value in iterations
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