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Newton-Krylov generalized minimal residual
algorithm in solving the nonlinear
two-dimensional integral equations of the
second kind on non-rectangular domains with
an error estimate

Hafez Yaria and Mehdi Delkhoshb

In this paper, an applicable numerical approximation has been proposed for solving nonlinear two-dimensional integral

equations (2DIEs) of the second kind on non-rectangular domains. Because directly applying the collocation methods on

non-rectangular domains is difficult, in this work, at first, the integral equation is converted to an equal integral equation on

a rectangular domain, then the solution is approximated by applying 2D Jacobi collocation method, the implementation of

these instructions reduces the integral equation to a system of nonlinear algebraic equations, therefore, solving this system

has an important role to approximate the solution. In this paper, Newton-Krylov generalized minimal residual (NK-GMRes)

algorithm is used for solving the system of nonlinear algebraic equations. Furthermore, an error estimate for the presented

method is investigated and several examples confirm the accuracy and efficiency of the proposed instructions. Copyright
c⃝ 2022 Shahid Beheshti University.

Keywords: Non-rectangular domains; 2D integral equations; Jacobi polynomials; Collocation method; Newton-

Krylov GMRes algorithm.

1. Introduction

Integral equations occur in wide variety of problems and provide an important tool for modeling the numerous problems in

physics, engineering, mechanics, and applied sciences. In [1], a 2DIE was investigated that appear in axisymmetric contact

problems for bodies with complex rheology. The formulation of a problem in diffraction theory leads us to solve a 2D singular

integral equation [2], in [3], a 2D Fredholm integral equation of the first kind was discussed that this equation has been raised in

potential problems for elliptic and circular disk, an integral equation appears in connection with the problem of the electrostatic

potential due to a charged disk [5], the investigation of mixed problems of the mechanics of continuous media leads us to solve

an integral equation [6], see [4, 7, 8, 9, 10, 11]. Due to the limited scope of analytical solutions, attentions have been paid for

approximating the solution of these equations. There are various numerical methods for solving integral equations. In [12] Taylor

polynomial solutions were proposed to solve non-linear Volterra-Fredholm (V-F) integral equations. In [13], a Taylor method was

improved and implemented on high-order linear V-F integro-differential equations. Shahmorad in [14] solved general form linear

Fredholm-Volterra integro-differential equations by the Tau method and also error estimate of the method was investigated. In

[15], mixed V-F integral equations by applying 2D Bernstein polynomials and their operational matrix have been approximated. In

[16], rationalizing Haar wavelet functions has been applied to solve 2DIEs. In [17], Jacobi collocation method was investigated for

solving multi-dimensional Volterra integral equations. Mirzaee et al. In [18], discussed three-dimensional V-F integral equations,

three-dimensional V-F integral equations of the first and second kinds were approximated using Bernstein’s approximation in
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[19], for more references and other methods in applied sciences see [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30].

Notice that all the reviewed nonlinear 2DIEs are on rectangular domains, here we would like to consider a larger class of nonlinear

2DIEs on non-rectangular domains as follows:

u(x, t)−
r∑
j=1

λj

∫
D

kj(x, t, y , s, u(y, s))dyds = f (x, t), (x, t) ∈ D, (1)

where u(x, t) is an unknown function, kj , f are the known functions, r is a positive integer constant, λj are real constants, and

D is the non-rectangular domain of the equation.

The domain of this kind of integral equations merely is not rectangular, therefore, directly applying the collocation method for

solving them is difficult. For solving 2D integral equations on non-rectangular domains using collocation, Galerkin and Nystrom

methods, an instruction has been applied in [31], mesh refinement and triangulation increase the difficulties and complexity of

the problems. In [32, 33, 34, 35] have been proposed other instructions.

Collocation method is a popular, powerful, and simple method that has been considered allots in past decades, for example see

[36, 37, 38, 39, 40]. In this work, at first, the domain of the problems is transferred to a rectangular domain and then 2D shifted

Jacobi collocation is applied for solving them. By utilizing these instructions, the problem is reduced to a system of nonlinear

algebraic equations. So speed and accuracy of the method to solve this system are important parameters to approximate this

type of integral equations. Newton-Krylov algorithm is one of the good ideas and most powerful that has been considered by

the amount large of researchers, see [43, 44, 45].

The rest of the paper is as: in Section 1.1, some properties of Jacobi and shifted Jacobi polynomials are discussed. In Section

1.2, the NK-GMRes algorithm is presented, in Section 2, the implementation of the method is explained. Section 3 is devoted

to convergence analysis. In Section 4, the numerical results are reported, and in the last section, a conclusion of our study is

provided.

1.1. Jacobi and shifted Jacobi polynomials

In this section, some fundamental concepts and properties involved with orthogonal shifted Jacobi polynomials are recalled.

The Jacobi polynomials, associated with the real parameters α, β > −1, are a sequence of polynomials J(α,β)i (x)(i = 0, 1, ...) of

degree i and orthogonal with respect to the weight function w(x) = (1− x)α(1 + x)β on the interval [−1, 1]:∫ 1
−1
J(α,β)m (x)J(α,β)n (x)w(x) = hmδmn,

where δmn is the Kronecker function and

hm =
2(α+β+1)Γ(m + α+ 1)Γ(m + β + 1)

(2m + α+ β + 1)m!Γ(m + α+ β + 1)
.

The shifted Jacobi polynomials of P
(α,β)
k (x) are obtained by applying the mapping of x → (2x − 1) to the Jacobi polynomials

[46]. The analytical form of them is given by

P
(α,β)
k (x) =

k∑
i=0

(−1)(k−i)Γ(k + β + 1)Γ(k + i + α+ β + 1)
Γ(i + β + 1)Γ(k + α+ β + 1)(k − i)!i! x

i ,

and also they are orthogonal on [0, 1] as: ∫ 1
0

P
(α,β)
i (x)P

(α,β)
k (x)w (α,β)(x)dx = ηkδik ,

where w (α,β)(x) = xβ(1− x)α and ηk = hk
2(α+β+1)

. More properties of these functions are stated in Ref. [46].

Any arbitrary function of u(x) ∈ L2([0, 1]) can be expanded as:

u(x) =

∞∑
i=0

aiP
(α,β)
i (x), (2)

where

ai =
1

ηi

∫ 1
0

P
(α,β)
i (x)u(x)w (α,β)(x)dx, i = 0, 1, · · · .

If the infinite series in Eq. (2) is truncated, then it can be written as

u(x) ≃ uN(x) =
N∑
i=0

aiP
(α,β)
i (x) = P T (x)A,

where A = [a0, a1, ..., aN ]
T and P (x) = [P

(α,β)
0 (x), P

(α,β)
1 (x), ..., P

(α,β)
N (x)]T .

Two variables shifted Jacobi polynomials are defined as:
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T
(α,β)
mn (x, y) = P

(α,β)
m (x)P

(α,β)
n (y), (x, y) ∈ D2 = [0, 1]× [0, 1], and m, n = 0, 1, · · · .

These polynomials with the weight function of W (α,β)(x, y) = w (α,β)(x)w (α,β)(y) on D2 are orthogonal:

Lemma 1.1. Two variables shifted Jacobi polynomials of T
(α,β)
mn (x, y) are orthogonal on D

2.

Proof. See Ref. [46].

A function u(x, y) defined over D2 can be expressed in terms of two variables shifted Jacobi polynomials as

u(x, y) =

∞∑
j=0

∞∑
i=0

ai jT
(α,β)
i j (x, y), (x, y) ∈ D2,

where

ai j =
1

ηiηj

∫ 1
0

∫ 1
0

T
(α,β)
i j (x, y)u(x, y)W (α,β)(x, y)dxdy.

If we approximate u(x, y) by the first (N + 1)(M + 1)-terms, then we can write

u(x, y) ≃ uNM(x, y) =
M∑
j=0

N∑
i=0

ai jT
(α,β)
i j (x, y) = ΦT (x, y)A,

where A = [a00, ..., a0M , ..., aN0, ..., aNM ]
T and

Φ(x, y) = [T
(α,β)
00 (x, y), ..., T

(α,β)
0M (x, y), ..., T

(α,β)
N0 (x, y), ..., T

(α,β)
NM (x, y)]

T .

1.2. Newton-Krylov algorithm

By applying spectral methods on nonlinear integral equations, a system of nonlinear algebraic equations is obtained. Let F (x) = 0

where F : Rn → Rn is a function of F (x) = (f1(x), f2(x), ..., fn(x))T and x ∈ Rn is a vector. Consider the well-known Newton’s
iterative method:

F (xn+1) = F (xn) + (xn − xn+1)F ′(xn),

F ′(xn) is a n × n Jacobian matrix. Therefore
xn+1 = xn − J(xn)−1F (xn).

It is obvious at each iteration, a linear system must be solved, by increasing the complexity of equations solving this linear system

mostly could be time-consuming process. One of the best ideas to overcome this problem is to use from the Newton-Krylov

generalized minimal residual algorithm (NK-GMRes):

A framework for GMRes implementation

Begin

1. r = b − Ax, v1 = r/||r ||2, ρ = ||r ||2, β = ρ, k = 0.
2. while ρ > ϵ||b||2 and k < kmax do
2.a k = k + 1.

2.b Apply Arnoldi to obtain Hk and Vk+1 from Vk and Hk−1.

2.c e1 = (1, 0, ..., 0)
T ∈ Rk+1.

2.d Solve min ||βe1 −Hkyk ||Rk+1 for yk ∈ Rk .
2.e ρ = ||βe1 −Hkyk ||Rk+1 .
end while

3. xk = x0 + Vkyk .

End

For more details see [47].

2. Proposed Method

At first, the method is applied to a particular non-rectangular domain that we call it the domain of the first kind, then we will

show this method can be extended for solving other kinds of 2D non-rectangular domains.
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2.1. The domain of the first kind:

If

D = {(θ1, θ2) ∈ R2 : a ≤ θ1 ≤ b, α(θ1) ≤ θ2 ≤ β(θ1)},

we will have

u(θ1, θ2)−
r∑
j=1

λj

∫ b
a

∫ β(ρ)
α(ρ)

kj(θ1, θ2, ρ, τ, u(ρ, τ))dτdρ = f (θ1, θ2), (3)

where a ≤ θ1 ≤ b and α(θ1) ≤ θ2 ≤ β(θ1). θ1 and θ2 are converted to the fixed interval [0, 1] by linear transformation as follows

θ2 = yβ(θ1) + (1− y)α(θ1), θ1 = (b − a)x + a, (4)

where x, y ∈ [0, 1]. By substitution right-hand sides of the above relations in u(θ1, θ2), we have

u(θ1, θ2) = u
(
(b − a)x + a, yβ(θ1) + (1− y)α(θ1)

)
= u∗(x, y).

Now, the domain of u∗(x, y) is squared, and as mentioned in the past section, may be approximated as

u∗(x, y) ≃ u∗NM(x, y) =
M∑
j=0

N∑
i=0

ai jT
(α,β)
i j (x, y),

since u(θ1, θ2) = u
∗(x, y), u∗NM(x, y) is also an approximation of u(θ1, θ2). In another word, we will have

uNM(θ1, θ2) = u
∗
NM(x, y) ≃ u∗(x, y) = u(θ1, θ2).

By substitution u∗NM(x, y) in Eq. (3), we have:

uNM(x, y)−
r∑
j=1

λj

∫ b
a

∫ β(ρ)
α(ρ)

kj(θ1, θ2, ρ, τ, uNM(ρ, τ))dτdρ = f (θ1, θ2). (5)

Utilizing Gauss-Legendre integration rule [41] and using {(xi , yj), i = 0...N and j = 0...M} as collocation points, where {xi}Ni=0
and {yj}Mj=0 are zeros of the shifted Jacobi polynomials of degree (N + 1) and (M + 1), respectively, that by using expressions
in Eq. (4) are transferred to the domain of the problem, (N + 1)(M + 1) nonlinear algebraic equations are generated that to

solve this nonlinear system of algebraic equations and obtaining unknown coefficients we have used the NK-GMRes method.

2.2. The domain of the second kind:

If

D = {(θ1, θ2) ∈ R2 : β(θ2) ≤ θ1 ≤ α(θ2), a ≤ θ2 ≤ b}.

Similarly, by commuting the variables, it is clear that the computations are straightforward.

Remark. If a domain is not either the first or second kinds but could be divided into the finite number of the first

and second kinds sub-domains, then the method is applied in each sub-domains. In another word, suppose

D = {D1
∪
D2
∪
...
∪
Dq} , q ∈ N,

where Di belongs to the domain of the first or second kind, by applying the method on domain i , we have

u iNM(θ1, θ2)−
r∑
j=1

λj

∫
D

kj(θ1, θ2, ρ, τ, u
i
NM(ρ, τ))dτdρ = f (θ1, θ2), (6)

where u iNM(θ1, θ2) is the approximation function on domain Di . Now, there exist (N + 1)(M + 1) unknown coefficients, by using

[ (N+1)(M+1)
q

] number of scattered points in each sub-domain as collocation points, the problem is converted to find the solution

for the system of nonlinear algebraic equations.
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3. Error estimate

In this section, some theorems related to convergence analysis and error estimate are presented that the following theorems

show by increasing N and M, the approximate solution uNM(θ1, θ2) is convergent to u(θ1, θ2).

Theorem 3.1. Let u(x, y) ∈ CM [0, 1]× CM [0, 1] and is approximated such as uMM(x, y) =
M∑
j=0

M∑
i=0

ai jT
(α,β)
i j (x, y), then

we have

|ai j | ≤
1

22(i+j)
L
(α,β)
i j maxx∈D

∣∣∣∂(i+j)u(x, y)
∂x i∂y j

∣∣∣, D = [0, 1]× [0, 1],

where L
(α,β)
i j is independent of the function of u(x, y).

Proof. See [42].

Theorem 3.2. Suppose u(x, y) ∈ CM [0, 1]× CM [0, 1] then the bound of the error for the approximate solution resulted is as
follows:

∥u(x, y)−ΦT (x, y)A∥ ≤ 2
(2M)

(2M)!
E,

where E = max{E0, E1, ..., E2M}, and

Ei = max(x,y)∈D∥
∂(2M)u(x, y)

∂x (2M−i)∂y i
∥, i = 0, ..., 2M.

Proof. Let ZM(x, y) of degree at most M with respect to both variables x and y which interpolated u(x, y) in the domain D,

therefore we will have∫ 1
0

∫ 1
0

W (α,β)(x, y)
(
u(x, y)−ΦT (x, y)A

)2
dxdy ≤

∫ 1
0

∫ 1
0

W (α,β)(x, y)
(
u(x, y)− ZM(x, y)

)2
dxdy,

then consider the Taylor expansion about (0, 0) in D, the bound of error is obtained as follows:

u(x, y)− ZM(x, y) =
2M∑
i=0

∂(2M)u(ξx , ξy )

(2M − i)!i!∂x (2M−i)∂y i x
(2M−i)y i ,

that (ξx , ξy ) ∈ [0, 1]× [0, 1]. Therefore

∥u(x, y)− ZM(x, y)∥ ≤
2M∑
i=0

1

(2M − i)!i!max(ξx ,ξy )∈[0,x ]×[0,y ]
∥∥∥∂(2M)u(ξx , ξy )
∂x (2M−i)∂y i

x (2M−i)y i
∥∥∥.

Since

max(ξx ,ξy )∈[0,x ]×[0,y ]

∥∥∥∂(2M)u(ξx , ξy )
∂x (2M−i)∂y i

∥∥∥ ≤ max(x,y)∈D∥∥∥∂(2M)u(x, y)
∂x (2M−i)∂y i

∥∥∥ = Ni .
Therefore

∥u(x, y)− ZM(x, y)∥ ≤
2M∑
i=0

Ni
(2M − i)!i! .

Consider N = max [N0, N1, ..., N2M ], hence we have

∥u(x, y)− ZM(x, y)∥ ≤
2M∑
i=0

N

(2M − i)!i! =
N

2M!

2M∑
i=0

(
2M

i

)
=
N2(2M)

2M!
,

therefore

∥u(x, y)−ΦT (x, y)A∥ ≤ N2
(2M)

2M!
. 2

4. Illustrative Examples

In order to illustrate the performance of the presented method in solving 2D integral equations on the non-rectangular domain

and justify the efficiency of the method, the following examples have been considered. To study the convergence behavior of the

method, the maximum and mean errors have been used with the following definition, respectively:

∥e(N,M)∥∞ = max(x,t)∈D
∣∣uex(x, t)− uNM(x, t)∣∣
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∥e(N,M)∥2 =
(∫
D

(
uex(x, t)− uNM(x, t)

)2
dxdt

) 1
2

.

where uex(x, t) and uNM(x, t) are the exact and approximate solutions.

The numerical implementation is carried out in the Microsoft Maple 15 with hardware configuration: Desktop 32-bit Intel Core

2 Due CPU, 4 GB of RAM, 32-bit operation system.

Example 4.1. Consider the nonlinear Fredholm integral equation is given in [34] by

u(x, t)−
∫
D

(
x

1 + t
)(1 + y + s)u2(y, s)dyds =

1

(x + t + 1)2
− 0.0271380471x

1 + t
, (x, t) ∈ D, (7)

where D is drowned in Figure 1(a) and determined by

D1 =
{
(x, t) ∈ R2 : 0 ≤ x ≤ 4

10
, (− 1

4
)x + 1

2
≤ t ≤ ( 1

4
)x + 1

2

}
,

D2 =
{
(x, t) ∈ R2 : 4

10
≤ x ≤ 1

2
, −4x + 2 ≤ t ≤ 4x − 1

}
,

D3 =
{
(x, t) ∈ R2 : 1

2
≤ x ≤ 6

10
, 4x − 2 ≤ t ≤ −4x + 3

}
,

D4 =
{
(x, t) ∈ R2 : 6

10
≤ x ≤ 1, ( 1

4
)x + 1

4
≤ t ≤ (−1

4
)x + 3

4

}
,

and has the exact solution u(x, t) = 1
(x+t+1)2

. We have applied the mentioned method and solved Eq (7). The distribution

of collocation points is depicted in Figure 1(b) and also the numerical results of ∥e∥2, ∥e∥∞ and the rate of convergence at
different points of N and M are presented in Table 1. The obtained results are compared with the method in [34]. Figure 2

shows the absolute error for N = M = 5.

(a) The consideration domain D for example 4.1. (b) Nodes distribution of example 4.1.

Figure 1.The consideration domain D and the nodes distribution for example 4.1

Example 4.2. Consider the nonlinear Fredholm integral equation is given in [34] by

u(x, t)−
∫
D

x(1− y 2)
(1 + t)(1 + s2)

(1− e−u(y,s))dsdy = −ln(1 + xt

1 + t2
) +
0.0321559973x

1 + t
, (x, t) ∈ D, (8)

where D is drowned in Figure 3(a) and determined by

D1 =
{
(x, t) ∈ R2 : 0 ≤ x ≤ 1

6
, 1− 6x ≤ t ≤ 1

}
,
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Table 1. Some numerical results for example 4.1.

Present Method Method in [34]

N = M ||e||2 ||e||∞ Ratio Iteration N ||e||2 ||e||∞

2 1.35× 10−2 4.07× 10−2 - 7 10 4.39× 10−3 2.71× 10−2
3 4.41× 10−3 9.12× 10−3 4 11 18 2.21× 10−3 1.36× 10−2
4 1.24× 10−3 4.56× 10−3 2 11 25 9.21× 10−4 8.53× 10−3
5 9.74× 10−5 2.55× 10−4 17 11 38 2.37× 10−5 6.23× 10−3

Figure 2. Absolute error of example 4.1 for N=M=5.

D2 =
{
(x, t) ∈ R2 : 1

6
≤ x ≤ 2

7
, 0 ≤ t ≤ ( 191

100
)− 273x

50

}
,

D3 =
{
(x, t) ∈ R2 : 2

7
≤ x ≤ 1

2
, (− 4

5
) + ( 14

5
)x ≤ t ≤ ( 91

30
)x + −31

60

}
,

D4 =
{
(x, t) ∈ R2 : 1

2
≤ x ≤ 5

7
, (− 1

4
)x + 1

2
≤ t ≤ ( 1

4
)x + 1

2

}
,

D5 =
{
(x, t) ∈ R2 : 5

7
≤ x ≤ 5

6
, 0 ≤ t ≤ ( 273

50
)x − 71

20

}
,

D6 =
{
(x, t) ∈ R2 : 5

6
≤ x ≤ 1, −5 + 6x ≤ t ≤ 1

}
,

and has the exact solution u(x, t) = −ln(1 + xt
1+t2
). The distribution of nodes is depicted in Figure 3(b), and also Table 2

presents the numerical results of ∥e∥2, ∥e∥∞ and the rate of convergence at different points of N and M. The obtained results
are compared with the method in [34]. Figure 4 shows the absolute error for N = M = 6.

Table 2. Some numerical results for example 4.2.

Present Method Method in [34]

N = M ||e||2 ||e||∞ Ratio Iteration N ||e||2 ||e||∞

2 2.11× 10−1 4.49× 10−1 - 1 10 1.55× 10−3 9.86× 10−3
4 1.74× 10−3 3.11× 10−2 14 2 18 1.73× 10−4 6.77× 10−4
5 4.16× 10−4 1.04× 10−3 29 2 25 6.22× 10−5 2.14× 10−4
6 4.89× 10−5 1.64× 10−4 6 1 38 9.24× 10−5 2.26× 10−4

Example 4.3. Consider the nonlinear Fredholm integral equation with the exact solution u(x, t) = t sin(x):

u(x, t)−
∫
D

(
u(y, s)

)2
dsdy = t sin(x)− 0.02800777433, (x, t) ∈ D, (9)

where is shown in Figure 5(a) and determined by
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(a) The consideration domain D for example 4.2. (b) Nodes distribution for example 4.2.

Figure 3.The consideration domain D and the nodes distribution for example 4.2.

Figure 4. Absolute error of example 4.2 for N=M=6.

D =
{
(x, t) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ t ≤ x2

}
.

Figure 5(b) shows the distribution of collocation points. Table 3 presents the numerical results of ∥e∥2, ∥e∥∞ and the rate of
convergence at the different points of N and M. Then in Figure 6 the absolute error for N = M = 7 is presented.

5. Conclusion

In this study, 2D collocation method is developed for solving nonlinear 2DIEs on non-rectangular domains. Since applying of the

2D collocation method for non-rectangular is difficult, the domain is transferred onto a rectangular domain, and by using this

simple trick could get relieved of this problem. By applying these instructions the problems are reduced to a system of nonlinear
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(a) The consideration domain D for example 4.3. (b) Nodes distribution for example 4.3.

Figure 5.The consideration domain D and the nodes distribution for example 4.3.

Table 3. some numerical results for example 4.3.

N ||e||2 ||e||∞ Ratio Iteration

2 1.79× 10−1 3.65× 10−1 - 2

4 4.38× 10−3 8.57× 10−3 42 3

5 6.49× 10−4 1.87× 10−3 4 4

6 9.83× 10−5 8.95× 10−4 14 7

7 2.18× 10−5 1.29× 10−4 6 7

Figure 6. Absolute error of example 4.3 for N=N=7.

algebraic equations, therefore, running time and accuracy in solving this system are important parameters to approximate the

solution of nonlinear 2DIEs on non-rectangular domains. In this work, the NK-GMRes method was used for solving the obtained
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system of nonlinear algebraic equations. Additionally, the convergence of accuracy is examined in three various nonlinear 2D

integral equations, that confirm the accuracy and efficiency of the method.
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