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Reproducing kernel method for Abel’s second
kind singular integral equations

N. Abdollahia and S. Abbasbandyb

Singular integral equations (SIEs) are often encountered in certain contact and fracture problems in solid mechanics. In

this paper, we apply the reproducing kernel method (RKM) to give the approximate solution of Abel’s second-kind singular

integral equations. For solving this problem, difficulties lie in its singular term. In order to remove the singular term of the

equation, an equivalent transformation is made. Solution representations are obtained in reproducing kernel Hilbert space.

Numerical experiments show that our reproducing kernel method is efficient. To show the high accuracy of the method

the results are compared to other numerical methods and satisfactory agreements are achieved. Copyright c⃝ 2022 Shahid
Beheshti University.
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1. Introduction

In the present paper, we consider the following Abel integral equation of the second kind

y(x) = g(x) + Hy(x), (1)

with

Hy(x) = λ

∫ x

0

N[y(t)]

(x − t)α dt, 0 ≤ x, t ≤ 1, (2)

where λ ∈ C is a parameter, g(x) is a non-homogeneous component, y(x) is unknown function and has to be determined,
N[y(x)] is linear or nonlinear function of y(x) in W 1

2 [0, 1] and y(x), g(x) ∈ W 1
2 [0, 1]. For α ∈ (0, 1), (1) is weakly singular

Volterra integral equation that the special case α = 1
2
often occurs in physical problems. Abel integral equations have many

applications in the various fields, such as solid mechanics, chemistry, scattering theory, astrophysics, fluid flow and heat condition

[9, 14].

In recent years different techniques have been proposed for obtaining the approximate analytic and numeric solution of Abel

integral equations. For instance Laplace decomposition method [8], Homotopy perturbation method [6], Adomian decomposition

method [3], Chebyshev wavelets method [13], Bernstein operational method [2, 12], Taylor expansion [7], Block-pulse function

method [11] and Variational iteration method [10]. The aim of this paper is implementation the theory of reproducing kernel

[1, 4] to represent the approximate solution of Abel integral equation (1) in the reproducing kernel space.

The outline of this paper is as follows: In the next section we introduce an algorithm to represent the approximate solution

of (1). In section 3 we present some numerical examples.

2. Method of solution

In this section, the solution of (1) is given in the space W 1
2 [0, 1], is defined by

W 1
2 [0, 1] = {y(x)|y is absolutely continuous, y , y ′ ∈ L2[0, 1]}.
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In [4] it has been proved that W 1
2 [0, 1] is a reproducing kernel space and its reproducing kernel is Rt(x) where

Rt(x) =

{
1 + x, x ≤ t,
1 + t, x > t.

(3)

Let S = {x1, x2, · · · } is dense in the interval [0, 1]. Put ψi(x) = Rxi (x). From the property of the reproducing kernel, it holds

⟨y(x), ψi(x)⟩W 12 = y(xi).

Theorem 1 For (1), {ψi(x)}∞i=1 is the complete system of W 1
2 [0, 1] if S be dense in [0, 1].

Proof. Clearly ψi(x) ∈ W 1
2 [0, 1]. For each y(x) ∈ W 1

2 [0, 1], let ⟨y(x), ψi(x)⟩W 12 = 0 (i = 1, 2, · · · ) thus y(xi) = 0. Since y(x)
is continuous and S is dense in [0, 1] then y(x) = 0 for each x ∈ [0, 1]. So proof is complete. �
We apply Gram-Schmidt ortho-normalization to derive the orthonormal system { ψi(x)}∞i=1,

ψi(x) =

i∑
k=1

βikψk(x),

where βik are coefficients of Gram-Schmidt ortho-normalization.

Theorem 2 Let S be dense in [0, 1]. If y(x) be a unique solution of (1) then y(x) satisfies the form

y(x) =

∞∑
i=1

i∑
k=1

βik(g(xk) +Hy(xk))ψi(x). (4)

Proof. Assume y(x) be the solution of (1) and y(x) ∈ W 1
2 [0, 1]. From Theorem 1, y(x) can be expanded to Fourier series as

follow,

y(x) =

∞∑
i=1

⟨y(x), ψi(x)⟩W 12ψi(x)

=

∞∑
i=1

i∑
k=1

βik⟨y(x), ψk(x)⟩W 12ψi(x)

=

∞∑
i=1

i∑
k=1

βik⟨g(x) +Hy(x), ψk(x)⟩W 12ψi(x)

=

∞∑
i=1

i∑
k=1

βik(g(xk) +Hy(xk))ψi(x).

�
Note that the approximate solution yn(x) of (1) can be obtained by

yn(x) =

n∑
i=1

i∑
k=1

βik(g(xk) +Hy(xk))ψi(x). (5)

Theorem 3 The approximate solution yn(x) uniformly converges to the exact solution y(x).

Proof. Let Rx(t) is the reproducing kernel of the space W
1
2 [0, 1]. Because Rx(t) is continuous in [0, 1], so there exist a positive

constant M such that ∥ Rx(t) ∥W 12≤ M. Then

| yn(x)− y(x) | =| ⟨yn(t)− y(t), Rx(t)⟩W 12 |

≤∥ yn(t)− y(t) ∥W 12 ∥ Rx(t) ∥W 12
≤ M ∥ yn(t)− y(t) ∥W 12 .

We know ∥ yn(t)− y(t) ∥W 12−→ 0 as n −→∞ so | yn(x)− y(x) |−→ 0 as n −→∞. The proof is complete. �
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The approximate solution yn in (5) is suitable for the case N[y(x)] in (2) be linear. If N[y(x)] be a nonlinear term we have to

use the following iteration formula to get approximate solution.{
y1(x) = g(x),

yn+1(x) =
∑n
i=1 Aiψi(x),

(6)

where the coefficients Ai are unknown and given as
A1 = β11(g(x1) +Hy1(x1)),

A2 =
∑2
k=1 β2k(g(xk) +Hy2(xk)),

· · ·
An =

∑n
k=1 βnk(g(xk) +Hyn(xk)).

(7)

Lemma 1 If ∥yn(x)− y(x)∥W 12 −→ 0 and xn −→ t as n −→∞ , then yn(xn) −→ y(t) as n −→∞.

Proof. Since

| yn(xn)− y(t) |= | yn(xn)− yn(t) + yn(t)− y(t) |
≤ | yn(xn)− yn(t) | + | yn(t)− y(t) |,

by reproducing kernel property of Rx(t), we have yn(xn) = ⟨yn(x), Rxn(x)⟩W 12 and yn(t) = ⟨yn(x), Rt(x)⟩W 12 , hence

| yn(xn)− yn(t) |= | ⟨yn(x), Rxn(x)− Rt(x)⟩W 12 |

≤∥yn(x)∥W 12 ∥Rxn(x)− Rt(x)∥W 12 .

From symmetry of Rt(x), it follows that ∥Rxn(x)− Rt(x)∥W 12 −→ 0 as n −→∞.
So | yn(xn)− yn(t) |−→ 0 as soon as xn −→ t. For any t ∈ [0, 1], it holds that | yn(t)− y(t) |−→ 0.
Therefore | yn(xn)− y(t) |−→ 0 as n −→∞. The proof is complete. �

Theorem 4 If S be dense in [0, 1] and ∥yn(x)∥W 12 be bounded, then the n-term approximate solution yn(x) of (6) is convergence
to the exact solution y(x) of (1) and

y(x) =

∞∑
i=1

Aiψi(x),

where Ai is given by (7).

Proof. (1) We will prove the convergence of (6). By (7), we have

yn+1(x) = yn(x) + Anψn(x). (8)

From the orthogonality of {ψi(x)}∞i=1 we can write
∥yn+1(x)∥2W 12 = ∥yn(x)∥

2
W 12
+ A2n.

The sequence ∥yn∥W 12 is monotone increasing. Because of the condition that ∥yn∥W 12 is bounded, ∥yn∥W 12 is convergence as soon
as n −→∞. So there exists a constant c such that

∞∑
i=1

A2i = c.

It implies that

Ai =

i∑
k=1

βik(g(xk) +Hyi(xk)) ∈ ℓ2, i = 1, 2, · · ·

Let m > n, from the orthogonality of yn+1(x)− yn(x), n = 2, 3, · · · , we have

∥ym(x)− yn(x)∥2W 12 =∥ym(x)− ym−1(x) + ym−1(x)− ym−2(x) + · · ·+ yn+1(x)− yn(x)∥
2
W 12

≤∥ym(x)− ym−1(x)∥2W 12 + ∥ym−1(x)− ym−2(x)∥
2
W 12
+ · · ·+ ∥yn+1(x)− yn(x)∥2W 12

=

m∑
i=n+1

A2i .
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As n −→∞, we have
∑m
i=n+1 A

2
i −→ 0, so ∥ym(x)− yn(x)∥2W 12 −→ 0.

From the completeness of W 1
2 [0, 1], there exists a y(x) ∈ W 1

2 [0, 1] such that ∥yn(x)− y(x)∥ −→ 0.
Hence

y(x) =

∞∑
i=1

Aiψi(x). (9)

(2). We will prove that yn+1(xk) = y(xk) for all k ≤ n. Define the orthogonal projection Pn from W 1
2 [0, 1] to

Span{ψ1, ψ2, · · · , ψn} by

Pny(x) =

n∑
i=1

Aiψi(x).

We have

yn+1(xk) =⟨yn+1(x), ψk(x)⟩W 12
=⟨Pny(x), ψk(x)⟩W 12
=⟨y(x), Pnψk(x)⟩W 12
=⟨y(x), ψk(x)⟩W 12
=y(xk).

Thus,

Hyn+1(xk) = Hy(xk).

(3). In this step, we will prove that y(x) is the solution of (1).

From (9), it follows

y(xj) =

∞∑
i=1

Ai⟨ψi(x), ψj(x)⟩W 12 . (10)

Multiplying both side of (10) by βnj and summing for j from 1 to n. Since {ψi(x)}∞i=1 has orthogonality property, we have

n∑
j=1

βnjy(xj) =

∞∑
i=1

Ai ⟨ψi(x),
n∑
j=1

βnjψj(x)⟩W 12

=

∞∑
i=1

Ai ⟨ψi(x), ψn(x)⟩W 12 = An.

Now, if n = 1, then

β11y(x1) = A1 = β11(g(x1) +Hy1(x1)),

on the other hand, if n = 2 then

β21y(x1) + β22y(x2) = A2 = β21y(x1) + β22(g(x2) +Hy2(x2)),

Thus

y(x2) = g(x2) +Hy2(x2).

It easy to see that

y(xn) = g(xn) +Hyn(xn).

For any x ∈ [0, 1], since S = {xi}∞i=1 is dense in [0, 1] there exists a subsequence {xnk }
∞
i=1 such that xnk −→ x.

From Lemma 2.4 and the above form, we have

y(x) = g(x) +Hy(x).

That is, y(x) is the solution of (1). The proof is complete. �
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Theorem 5 Assume that y(x) is the solution of (1) and rn(x) is the error of the approximate solution yn+1(x) that is given by

(6), then rn(x) is monotone decreasing in the sense of ∥.∥W 12 , i.e rn −→ 0 as n −→∞.

Proof. We know that

∥rn(x)∥2W 12 = ∥y(x)− yn+1(x)∥
2
W 12
= ∥

∞∑
i=n+1

Aiψi(x)∥2W 12 =
∞∑

i=n+1

A2i ,

∥rn−1(x)∥2W 12 =
∞∑
i=n

A2i .

Thus ∥rn(x)∥2W 12 ≤ ∥rn−1(x)∥
2
W 12
. Consequently, rn(x) is monotone decreasing in the sense of ∥.∥W 12 . �

3. Numerical examples

In this section three numerical examples are presented to give a clear overview of the procedure. For all of these examples the

exact solutions are available.

Example 1. As the first example, consider (1)-(2) with [11, 13]

N[y(x)] = y(x), g(x) =
1√
1 + x

− 1
4
arcsin(

1− x
1 + x

) +
π

8
, λ =

−1
4
, α =

1

2
,

where the exact solution is y(x) = 1√
1+x
. Table 1 shows the absolute values of error for y(x) with n = 20, using the method

proposed in Section 2 and compares the result with result obtained by various numerical schemes at different gird point. As we

can see the proposed method is much more accurate than other methods. Figure 1 shows the comparison with exact solution

for n = 20.

Table 1. Absolute values of error for y from Example 1 with n = 20

x Presented method method[13] method[11]

(k=0,M=16) (m=16)

0 0.0 − −
0.1 3.33067× 10−16 8.09355× 10−14 3× 10−3
0.2 2.22045× 10−16 1.09024× 10−13 1× 10−3
0.3 3.33067× 10−16 1.38001× 10−13 1× 10−3
0.4 3.33067× 10−16 1.33005× 10−13 2× 10−3
0.5 5.55112× 10−16 1.28009× 10−13 4× 10−3
0.6 4.44089× 10−16 1.22014× 10−13 2× 10−3
0.7 3.33067× 10−16 1.09912× 10−13 6× 10−4
0.8 2.22045× 10−16 6.29496× 10−14 6× 10−4
0.9 7.77156× 10−16 8.69305× 10−14 1× 10−3
1 4.44089× 10−16 − −

Figure 1. Comparison among exact solution and approximate solution for Example 1 with n = 20.
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Example 2. In this example, consider (1)-(2) with [11, 13, 15]

N[y(x)] = y(x), g(x) = 2
√
x, λ = −1, α = 1

2
,

the exact solution for this example is y(x) = 1− eπxer f c(
√
πx), where er f c(

√
πx) is complementary error function defined by

er f c(x) = 2√
x

∫∞
x
e−t

2
dt.

The comparison among absolute values of error is shown in Table 2. Figure 2 shows the comparison with exact solution for

n = 50.

Table 2. Absolute values of error for y from Example 2 with n = 20

x Presented method method[15] method[13] method[11]

[4/4] (k=0,M=16) (m=16)

0 2.45659× 10−16 − − −
0.1 1.66533× 10−16 4.33846× 10−9 1.62983× 10−4 1.15872× 10−2
0.2 1.11022× 10−16 4.87786× 10−8 2.82352× 10−4 1.13995× 10−2
0.3 0.0 1.82276× 10−7 1.89633× 10−4 9.55367× 10−3
0.4 1.11022× 10−16 4.42272× 10−7 1.43922× 10−4 1.68375× 10−3
0.5 2.22045× 10−16 8.53771× 10−7 1.32002× 10−4 7.61903× 10−3
0.6 0.0 1.43214× 10−6 1.21446× 10−4 1.53846× 10−3
0.7 0.0 2.18575× 10−6 9.86938× 10−5 3.09894× 10−4
0.8 0.0 3.11805× 10−6 2.45968× 10−5 2.98197× 10−4
0.9 1.11022× 10−16 4.22898× 10−6 1.45968× 10−4 7.08482× 10−4
1 0 − − −

Figure 2. Comparison among exact solution and approximate solution for Example 2 with n = 50.

Example 3. As the last example, we consider the nonlinear case for (1)-(2), with [5]

N[y(x)] = y 2(x), g(x) = 1− x2 + 2
√
x

315
(315− 336x2 + 128x4), λ = −1, α = 1

2
,

which has the exact solution y(x) = 1− x2. Figure 3 shows the comparison with exact solution for n = 20. The comparison
among absolute values of error is shown in Table 3.

4. Conclusions

In the current work, we have revisited Abel integral equations which have many applications in various fields, such as solid

mechanics, chemistry, scattering theory, astrophysics, fluid flow, and heat condition. Then, the reproducing kernel method

(RKM) has been applied to represent an approximate solution in reproducing kernel Hilbert space. Some numerical illustrative

examples have been given to show the efficiency and high accuracy of the method in comparison to the other recently proposed

methods such as radial basis and Block-Pulse functions collocation techniques.
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Table 3. Absolute values of error for y from Example 3

x n=10 n=20

0 2.22045× 10−16 2.22045× 10−16
0.1 3.33067× 10−16 6.66134× 10−16
0.2 1.11022× 10−16 8.88178× 10−15
0.3 3.33067× 10−16 1.11022× 10−16
0.4 1.11022× 10−16 4.44089× 10−16
0.5 1.11022× 10−15 1.11022× 10−16
0.6 4.44089× 10−16 1.11022× 10−15
0.7 3.33067× 10−16 4.44089× 10−16
0.8 9.99201× 10−16 1.38778× 10−15
0.9 0.0 1.11022× 10−15
1 0.0 6.66134× 10−16

Figure 3. Comparison among exact solution and approximate solution for Example 3 with n = 20.
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