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An efficient iterative method for finding the
Moore-Penrose and Drazin inverse of a
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In this paper, a third order convergent method for finding the Moore-Penrose inverse of a matrix is presented and analysed.

Then, we develop the method to find Drazin inversion. This method is very robust to find the Moore-Penrose and Drazin

inverse of a matrix. Finally, numerical examples show that the efficiency of the proposed method is superior over other

proposed methods. Copyright c⃝ 2022 Shahid Beheshti University.
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1. Introduction

Computing the inverse matrix, especially at high sizes, has always been a very difficult and time consuming task. Therefore,

numerical methods have always been important for calculation of the inverse matrix, and when it comes to numerical methods,

iterative methods have a special place among these methods.

The Moore-Penrose inverse of a matrix A ∈ Cm×n, denoted by A† ∈ Cm×n, is a unique matrix X satisfying in [13]:

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA, (1)

where above equations are Penrose equations, and where A∗ is the conjugate transpose of A.

There are two direct methods for finding the Moore-Penrose inverse, that means by their singular value decomposition and

determinantal representations [15, 17, 6, 7]. In the following, we present a basic method for finding the Moore-Penrose inverse

based on the singular value decomposition [19].

Assume that rank(A) = s. There are orthogonal matrices U ∈ Cm×m and W ∈ Cn×n, such that

A = U

(
D 0

0 0

)
W ∗,

where

D = diag(σ1, . . . , σs), σ1 ≥ · · · ≥ σs > 0,

and σ21, . . . , σ
2
s , are the nonzero eigenvalues of A

∗A. Therefore, the Moore-Penrose inverse A† could be defined by

A† = W

(
D−1 0

0 0

)
U∗.

There are several iterative methods to compute the Moore-Penrose inverse. The most famous iterative methods for

approximating the inverse A−1 are the Newton’s and Chebyshev’s methods [5, 8]

Vr+1 = Vr (2I − AVr ), r = 0, 1, 2, · · · , (2)
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and Wr = AVr ,Vr+1 = Vr
(
3I −Wr (3I −Wr )

)
,

(3)

respectively, where I is the identity matrix.

In [3], proposed another second order method as follows:Wr = AVr ,Vr+1 = Vr
(
5.5I −Wr (8I − 3.5Wr )

)
,

(4)

and this method is better in terms of efficiency and computation than all the proposed methods.

Note that an initial matrix was developed and introduced in [12] as follows

V0 = αA
∗, (5)

here α =
1

∥A∥1∥A∥∞
, where

∥A∥1 = max
1≤j≤n

m∑
i=1

|ai j |, ∥A∥∞ = max
1≤i≤m

n∑
j=1

|ai j |.

In the following, we show ∥X∥, for any subordinate norm of matrix X.

2. An efficient iterative method

Assume that A ∈ Cn×n is the nonsingular marix. We propose iterative method to find A−1:

Vr+1 =
1

25
Vr

(
225I − 669AVr + 907(AVr )2 − 582(AVr )3 + 144(AVr )4

)
, (6)

or 
ϑr = AVr ,

ξr = ϑ
2
r ,

Vr+1 =
1

25
Vr

(
225I − 669ϑr + ξr

(
907I − 582ϑr + 144ξr

))
.

(7)

In the following, we give some properties about the iterative method (7).

Theorem 1 Let A ∈ Cn×n be a nonsingular matrix, and the initial approximation V0 satisfies in

∥I − AV0∥ < 1,

then the iterative method (7) converges to A−1 with third-order.

Proof. Consider Er = I − AVr , therefore

Er+1 = I − AVr+1 = (I − AVr )3
(
I − 6AVr +

144

25
(AVr )

2
)

= (I − AVr )3
(19
25
I − 138

25
(I − AVr ) +

144

25
(I − AVr )2

)
=
19

25
E3r −

138

25
E4r +

144

25
E5r .

(8)

So,

∥Er+1∥ = ∥
19

25
E3r −

138

25
E4r +

144

25
E5r ∥ ≤

19

25
∥E3r ∥+

138

25
∥E4r ∥+

144

25
∥E5r ∥. (9)

Therefore, we have Er → 0, and then ∥E0∥ < 1, so I − AVr → 0, it means Xr → A−1.
Now, suppose that ϵ = A−1 − Vr is the error matrix, then we can get Aϵr = I − AVr = Er and

Aϵr+1 =
19

25
(Aϵr )

3 − 138
25
(Aϵr )

4 +
144

25
(Aϵr )

5.

Therefore, since A is invertible, we obtain

ϵr+1 =
19

25
ϵr (Aϵr )

2 − 138
25
ϵr (Aϵr )

3 +
144

25
ϵr (Aϵr )

4

Consequently, we have

∥ϵr+1∥ ≤
(19
25
∥A∥2 + 138

25
∥A∥3∥ϵr∥+

144

25
∥A∥4∥ϵr∥2

)
∥ϵr∥3.

Here, the iterative method (7) converges to A−1, and the order convergence of the method is three. �
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Theorem 2 According to (5), iterative method (7) satisfies

lim
r→∞

tr+1
t3r
= lim
r→∞

sr+1
s3r
=
19

25
,

where tr = ∥Aϵr∥ and sr = ∥Er∥.

Proof. From Theorem 1, we have

Aϵr+1 =
19

25
(Aϵr )

3 − 138
25
(Aϵr )

4 +
144

25
(Aϵr )

5,

then, we can obtain

tr+1 = ∥Aϵr+1∥ ≥
19

25
∥Aϵr∥3 −

138

25
∥Aϵr∥4 +

144

25
∥Aϵr∥5 = t3r (

3

4
− 23
4
tr + 6t

2
r ).

On the other hand, we can get

tr+1 = ∥Aϵr+1∥ ≤
19

25
∥Aϵr∥3 +

138

25
∥Aϵr∥4 +

144

25
∥Aϵr∥5 = t3r (

19

25
+
138

25
tr +

144

25
t2r ).

Now, from last two inequalities, we have

19

25
+
138

25
tr +

144

25
t2r ≤

tr+1

t3r
≤ 19
29
+
138

25
tr +

144

25
t2r .

According to Theorem 1 and limr→∞ tr = 0, then we can conclude that

lim
r→∞

tr+1

t3r
=
19

25
.

In the following, from Theorem 1, we have

Er+1 =
19

25
E3r −

138

25
E4r +

144

25
E5r ,

like previous inequalities
19

25
+
138

25
sr +

144

25
s2r ≤

sr+1

s3r
≤ 19
25
+
138

25
sr +

144

25
s2r .

Now from limr→∞ sr = 0, we can get

lim
r→∞

sr+1

s3r
=
19

25
.

�

Theorem 3 Suppose that A is a nonsingular matrix. If AV0 = V0A , then for the sequence (7), we have

AVi = ViA, i = 1, 2, · · · .

Proof. At frist, by using AV0 = V0A and (7), we can get AV1 = V1A.

Now, we suppose that AVi = ViA is true, then from (7), we can obtain

AVi+1 =
1

25
AVi

(
225I − 669AVi + 907(AVi)2 − 582(AVi)3 + 144(AVi)4

)
=
1

25
ViA

(
225I − 669ViA+ 907(ViA)2 − 582(ViA)3 + 144(ViA)4

)
= Vi+1A.

The proof is complete. �

Lemma 1 For the sequence {Vi}i=∞i=0 generated by the iterative scheme (7), it holds that

(ViA)
∗ = ViA, (AVi)

∗ = AVi , ViAA
† = Vi , A†AVi = Vi . (10)

10 Copyright c⃝ 2022 Shahid Beheshti University. Comput. Math. Comput. Model. Appl. 2022, Vol. 1, Iss. 2, pp. 8–19
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Proof. We can prove using the principle of mathematical induction on k. For k = 0 and according to (5), the first two equations

are obvious. Using (AA†)∗ = AA† and (A†A)∗ = A†A, we have

V0AA
† = αA∗AA† = αA∗ = V0, A†AV0 = αA

†AA∗ = αA∗ = V0.

Now, suppose that the conclusion holds for some k > 0. We domenstrate that it hold for k + 1. So

(Vk+1A)
∗ = { 1

25
Vk

(
225I − 669AVk + 907(AVk)2 − 582(AVk)3 + 144(AVk)4

)
A} = Vk+1A,

and the second statement is proved in a similar way.

For the third statement in (10), using VkAA
† = Vk , or then AVkAA

† = AVk , we have

Vk+1AA
† =

1

25
Vk

(
225I − 669AVk + 907(AVk)2 − 582(AVk)3 + 144(AVk)4

)
AA†

=
1

25
Vk

(
225I − 669AVk + 907(AVk)2 − 582(AVk)3 + 144(AVk)4

)
= Vk+1.

Therefore, the third statement in (10) holds for k + 1. Finally, the fourth statement is proved in a similar way.

�

Theorem 4 Considering the same assumptions as in Theorem 1, the iterative method (7) is asymptotically stable.

Proof. This theorem is similar to those have been taken for a general family of methods in [4]. Thus, the proof is omitted. �

Lemma 2 [4] For M ∈ Cn×n and any given ξ > 0. There is at least one matrix norm ∥.∥such that:

ρ(M) ≤ ∥M∥ ≤ ρ(M) + ξ,

here ρ(M) = max |λi |, where λi are eigenvalue of matrix M.

Lemma 3 [16] For P, S ∈ Cn×n, such that P = P 2 and PS = SP , it holds that

ρ(PS) ≤ ρ(S).

Theorem 5 Assume that A ∈ Cn×m is a matrix of rank s, and σ1 > σ2 > · · · > σs > 0 are singular values of A. Then the
generated sequence of (7) converges to the Moore-Penrose inverse A† in thirth-order provided that X0 =

A∗

C
, where C > σ21 is

a constant.

Proof. According to Lemma 1, we have

∥Xr+1 − A†∥ = ∥Vr+1AA† − A†AA†∥ ≤ ∥Vr+1A− A†A∥∥A†∥, (11)

and if Er = Vr − A†, then A†AErA = ErA.
We claim that

Er+1A =
(19
25
(ErA)

3) +
138

25
(ErA)

4 +
144

25
(ErA)

5
)
(ErA)

3. (12)

We know, from the definitions of the Moore-Penrose inverse and Er , we have

(I − A†A)t = I − A†A, t = 2, 3, (I − A†A)ErA = 0, ErA(I − A†A) = 0.

By using iterative method (7), we can get

Er+1A =
[ 1
25
Vr

(
225I − 669AVr + 907151(AVr )2 − 582(AVr )3 + 144(AVr )4

)
− A†

]
A

= −(I − VrA)3
(19
25
I − 138

25
(I − VrA) +

144

25
(I − VrA)2

)
+ I − A†A

= −(I − A†A− ErA)3
(19
25
I − 138

25
(I − A†A− ErA) +

144

25
(I − A†A− ErA)2

)
+ I − A†A

= −
(
(I − A†A)− 3(I − A†A)ErA+ 3(I − A†A)(ErA)− (ErA)3

)
×

(19
25
I − 138

25
(I − A†A) + 138

25
(ErA) +

144

25
(I − A†A)

− 288
25
(I − A†A)(ErA) +

144

25
(ErA)

2
)
+ I − A†A.
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Therefore, we can obtain

Er+1A =
(19
25
(ErA)

3) +
138

25
(ErA)

4 +
144

25
(ErA)

5
)
(ErA)

3.

This completes the proof of (12).

Now, consider P = A†A and S = X0A− I, therefore we have P 2 = P and then

PS = A†A(X0 − I) = A†AX0A− A†A = (A†A)∗X0A− A†A

= X0A− A†A = X0AA†A− A†A = (X0A− I)A†A = SP.

Now, according Lemma 3, we can get

ρ
(
(X0 − A†)A

)
= ρ

((A∗
C
− A†

)
A
)
≤ ρ

(A∗
C
A− I

)
= max
1≤i≤s

∣∣∣1− λi(A∗
C
A
)∣∣∣.

Since C < σ21, then we have

max
1≤i≤s

∣∣∣1− λi(A∗
C
A
)∣∣∣ < 1. (13)

By applying Lemma 2, we can conclude ∥∥∥(X0 − A†)A∥∥∥ ≤ ρ((X0 − A†)A)+ ξ < 1.
According to (11) and (12), we have limr→∞ ∥Xr − A†∥ = 0. �

Theorem 6 Sequence Vr produced by (7) and with (5), satisfies

R(Vr ) = R(A∗), N (Vr ) = N (A∗),

for r ≥ 0, where R(.) denotes the range of matrix and N (.) is the null space of matrix.

Proof. At frist since V0 = αA
∗, then the theorem obviously holds for r = 0. Suppose that y ∈ N (Vr ) is arbitrary vector.

According to the method (7), we have

Vr+1y =
1

25

(
225Vry − 669VrAVry + 907Vr (AVr )2y − 582(VrAVr )3y + 144Vr (AVr )4y

)
= 0.

So y ∈ N (Vr+1), then we can conclude N (Vr ) ⊆ N (Vr+1). Similarly we have R(Vr ) ⊇ R(Vr+1). Therefore, by mathematical
induction we have

N (Vr ) ⊇ N (V0) = N (A∗), R(Vr ) ⊆ R(V0) = R(A∗).

To prove equality, let

N =
∪
r∈N0

N (Vr ).

Suppose that y ∈ N , then y ∈ N (Vr0) for r0 ∈ N0. Since y ∈ N (Vr ) for every r ≥ r0, then we have Vry = 0 and according
Theorem 1, we obtain

V y = lim
r→+∞

Vry = 0.

Finally y ∈ N (V ) = N (A∗) and N ⊆ N (A∗). On the other hand, by using

N (A∗) ⊆ N (Vr ) ⊆ N ⊆ N (A∗),

we have, N (Vr ) = N (A∗).
Now, according to relation

dim R(Vr ) = m − dim N (Vr ) = m − dim N (A∗) = dim R(A∗),

and R(Vr ) ⊆ R(A∗), we have R(Vr ) = R(A∗). �
Now, if rank(A) = s ≤ min{n,m}, the singular value decomposition of A is:

A = U

(
D 0

0 0

)
W ∗.

Suppose that V0 = αA
∗, and from iterative method (7), we have

V0 = αA
∗ = W

(
D0 0

0 0

)
U∗,

12 Copyright c⃝ 2022 Shahid Beheshti University. Comput. Math. Comput. Model. Appl. 2022, Vol. 1, Iss. 2, pp. 8–19
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where D0 = αD is a diagonal matrix. Therefore, we have

W ∗V0U =

(
D0 0

0 0

)
.

Now, from the principle of mathematical induction and Lemma 1, we have

W ∗VrU =

(
Dr 0

0 0

)
, (14)

where Dr is diagonal matrix:

Dr+1 =
1

25
Dr

(
225I − 669(DDr ) + 907(DDr )2 − 582(DDr )3 + 144(DDr )4

)
, (15)

In the following, we state the following theorem.

Theorem 7 Suppose that A ∈ Cn×m is a matrix of rank s. The sequence (7) with the initial matrix (5), relations (14) and (15)
hold.

Table 1. CO and MM in every iteration of various methods

Method Newton Chebyshev Method 1 Method 2

CO 2 3 2 3

MM 2 3 3 4

Table 1 denotes convergence order (CO) and the number of matrix-matrix multiplications (MM) in every iteration of various

methods.

Note that Newton’s method is shown with Newton and methods (3), (4) and (7) with Chebyshev ,Method 1 andMethod 2,

respectively.

3. Application in Finding the Drazin Inverse

In 1958, a different kind of generalized inverse was introduced by Drazin [2], which does not have flexibility in rings and

semi-groups of associations but commutes with the element. The importance of this type of inverse and its calculation was later

expressed by Wilkinson in [22]. Many authors then offer direct or iterative methods for calculating this problem [14, 11, 21, 10].

Definition 1 The smallest negative integer k = ind(A), that holds

rank(Ak+1) = rank(Ak),

is called index of matrix A.

Definition 2 Suppose that A ∈ Cn×n, the Drazin inverse of A, denoted by AD, is matrix V , which holds in the following equations:

AkV A = Ak , V AV = V, AV = V A,

where k = ind(A).

• If ind(A) = 0, then AD = A−1.
• If ind(A) = 1, then AD = A†.

Li and Wei [9] proved that method (2) can be used to find the Drazin inverse of square matrices. Here, they proposed the

initial matrix:

V0 = W0 = βA
l , l ≥ ind(A) = k, (16)

Where β must satisfy the condition ∥I − AV0∥ < 1.
Now, we present the iterative method (7) for finding the Drazin inverse, where the initial matrix as

V0 = W0 =
2

tr(Ak+1)
Ak , (17)

where tr(.) stands for the trace of matrix A.

Comput. Math. Comput. Model. Appl. 2022, Vol. 1, Iss. 2, pp. 8–19 Copyright c⃝ 2022 Shahid Beheshti University. 13
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Proposition 1 [20] Let PL,M be the projector on a space L along a space M, then

(i) PL,MQ = Q⇔R(Q) ⊆ L;

(ii) QPL,MQ = Q⇔ N (Q) ⊇ M,

where R(.) denotes the range of matrix and N (.) is the null space of matrix.

Theorem 8 Suppose that A is singular square matrix. Also, let the initial matrix is chosen by equation (17). Then the sequence

Wr generated by the iterative method (7) has an error as follows

∥AD −Wr∥ ≤ O(∥AD∥∥F0∥3
r

),

to find the Drazin inverse, where F0 = T − AW0.

Proof. Let F0 = I − AW0, then Fr = I − AWr . Thus similarly as in (8), we can get

Fr+1 = I − AWr+1

= (I − AWr )3
(19
25
I − 138

25
(I − AWr ) +

144

25
(I − AWr )2

)
=
19

25
F 3r −

138

25
F 4r +

144

25
F 5r .

(18)

Using an arbitrary matrix norm of (18), we have

∥Fr+1∥ ≤
19

25
∥Fr∥3 +

138

25
∥Fr∥4 +

144

25
∥Fr∥5. (19)

Here, since ∥F0∥ < 1, from relation (19), we can obtain

∥F1∥ ≤
19

25
∥F0∥3 +

138

25
∥F0∥4 +

144

25
∥F0∥5 ≤ O(∥F0∥3).

By continuing this process, we can conclude

∥Fr+1∥ ≤
19

25
∥Fr∥3 +

138

25
∥Fr∥4 +

144

25
∥Fr∥5 ≤ O(∥Fr∥3).

So, we have ∥Fr+1∥ ≤ O(∥Fr )∥, for every r ≥ 0. Thus, we can get

∥Fr∥3 ≤ O(∥F0∥3
r

), r ≥ 0. (20)

According to relation (16), we have R(W0) ⊆ R(Ak). In addition, the use of this fact together with (6), which implies that
R(Wr ) ⊆ R(Wr−1), so, we can get

R(Wr ) ⊆ R(Ak), r ≥ 0. (21)

From (6), we have

Wr+1 =
1

25
Wr

(
225I − 669AWr + 907(AWr )2 − 582(AWr )3 + 144(AWr )4

)
,

it is easy to verify that

N (Wr ) ⊇ N (Ak), r ≥ 0. (22)

Now, using from [1], we have

AAD = ADA = PR(Ak ),N (Ak ), (23)

By usin Proposition 1 and relations (21) and (22), we obtain

WrAA
D = Wr = A

DAWr , r ≥ 0. (24)

Therefore, if the error matrix is δr = A
D −Wr , then

δr = A
D −Wr = AD − ADAWr = AD(I − AWr ) = ADFr . (25)

From (25) and (20), we have

∥δr∥ = ∥AD∥∥Fr∥ ≤ O(∥AD∥∥F 3
r

0 ∥),
the proof is complete. �

Corollary 1 According to the condition of theorem 8 and the initial iteration W0 is chosen such that

∥F0∥ ≤ ∥I − AW0∥ < 1, (26)

the scheme (7) converges to AD.

14 Copyright c⃝ 2022 Shahid Beheshti University. Comput. Math. Comput. Model. Appl. 2022, Vol. 1, Iss. 2, pp. 8–19
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4. Numerical results

In this section, we review and compare the results of the proposed method with other methods. Since the comparison of Method 1

in [3] shows that it worked better than other methods, so we compare the proposed Method 2 with methods Newton, Chebyshev

and Method 1. The stop criterion is
∥Vr+1 − Vr∥∞
1 + ∥Vr∥∞

< 10−12.

Here, Res is the residual when the process is stopped, and CPU is the time spent.

The algorithm to find A−1 by using method (7) is the following.

Algorithm 1 The method (7) for computing invers matrix.

Step 1: Input matrix A ∈ Cn×n.
Step 2: Take initial matrices V0 =

A∗

∥A∥1∥A∥∞
and tolerance ε ≥ 0. Set r := 0.

Step 3: Let

ϑr = AVr ,

ξr = ϑ
2
r ,

Vr+1 =
1

25
Vr

(
225I − 669ϑr + ξr

(
907I − 582ϑr + 144ξr

))
.

Step 4: Stop if
∥Vr+1 − Vr∥∞
1 + ∥Vr∥∞

≤ ε. Otherwise, r := r + 1 go to Step 3.

Example 1 Consider real three diagonal matrix with 100 arrays, where diagonals are:

(1, 20) = 6, (1, 1) = 1.5, (50, 1) = −4.5.

The results of Example 1 are displayed in Figures 1 and 2.

(a) (b)

Figure 1. a, b, respectively represent plots matrix and inverse matrix Example 1.

Example 2 Consider complex three diagonal matrix with 100 arrays, where diagonals are:

(1, 50) = 9− 2i , (1, 1) = 1 + 0.5i , (2, 1) = 4− i .

The results of Example 2 are showed in Figures 3 and 4.

Example 3 To evaluate the efficiency of the method in general, we have studied several real random matrices with different

dimensions. The results are presented in Figure 5.
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Figure 2. The numerical results of the methods for Example 1.

(a) (b)

Figure 3. a, b, respectively show plots matrix and inverse matrix Example 2.
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Figure 5. a ,b, respectively, represent the average MM to compute the Moore- Penrose inverse of real matrices (n × n) and (n × n + 20) by different methods.
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Figure 4. The numerical results of the methods for Example 2.

Example 4 [18] Consider three diagonal matrix, where diagonals are:

(1, 2) = 1, (1, 1) = 0, (2, 1) = −1.

Here dimension is odd, and matrices are singular with ind(A) = 1. The results for conputing Drasin inverse matrices are presented

in Figures 6 and 7.

(a) (b)

Figure 6. a, b, respectively display plots matrix and Drasin inverse matrix Example 4 for n = 99.

5. Conclusions

In this paper, we first present a method for solving nonlinear equations. This method has a very low performance in terms of

computational efficiency due to the presence of consecutive derivatives. Then we try the same method to find the Moore-Penrose

and Drazin inverse of an arbitrary matrix. We discuss the details of the performance of the iterative method in this study:
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Figure 7. The numerical results of the methods for Example 4.

• Demonstrate desired results by providing specific real and complex examples.
• Provide optimal results for real square and rectangular random matrices in different dimensions (see Figures 5).
• Provide examples in different dimensions to compute the Drazin inverse with the developed iterative method.

The mentioned results show that the proposed method well covered by theory.
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