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A hybrid method of successive linearization
method (SLM) and collocation method to
steady regime of the reaction-diffusion
equation

Eghbal Mohammadia and Elyas Shivaniana

This article presents a method based on combination of successive linearization method (SLM) and pseudo-spectral

collocation method and then is applied on a nonlinear model of coupled diffusion and chemical reaction in a spherical

catalyst pellet. It is obtained that this method can be used for nonlinear boundary value problems without difficulty

because the nonlinear part of the equation becomes inactive by SLM and more, to treat the linear equation, even in

the case of complicatedness, is straightforward by pseudo-spectral collocation method. Also, the results reveal the high

efficiency with reliable accuracy of this hybrid method. Copyright c⃝ 2022 Shahid Beheshti University.
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1. Introduction and the problem formulation

The steady regime of the reaction-diffusion process, at isothermal conditions, in the spherical geometric pellet is governed by [9]

De

(
d2r

dr 2
+
2

r

dc

dr

)
= kvc

n, (1)

where c is the reactant concentration in pore of catalyst pellet, De the effective diffusion coefficient for reactant, r the distance

from the pellet core kv is the reaction rate constant. The reaction order n in the above equation admits the range[0,∞]. The
boundary conditions at surface of catalyst and center of catalyst are assumed, respectively, as

c |r=r0 = cs , (2)

dc

dr
|r=0 = 0. (3)

By dimensionless variables

R =
r

r0
, C (R) =

c(r)

cs
,

the boundary value problem (1)–(3) turns to
d2C

dR2
+
2

R

dC

dR
= φ2Cn, (4)

C|R=1 = 1,
dC

dR
|R=0 = 0, (5)

where φ =
(
kv r20 c

n−1
s

De

) 1
2

denotes the Thiele modulus.
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The above problem is also of Lane-Emden type equation [14, 13, 5]. As a first step of the present approach in order to implement

the method, we have to transform the governing Eqs. (4)-(5) from the physical region [0, 1] into the region [−1, 1] by using the
mapping

R =
x + 1

2
, −1 ≤ x ≤ 1.

By considering u (x)=C(2R−1) equation (4) is converted to the differential equation with boundary conditions on interval [−1,
1] i.e.

d2u

dx2
+

2

x + 1

du

dx
=
φ2

4
un, (6)

u|x=1 = 1,
du

dx
|x=−1 = 0. (7)

2. Successive linearization method (SLM)

The successive linearization method (SLM) firstly proposed by Motsa [12] is based on the assumption that the unknown functions

un can be expanded as

u (x) = Ui (x) +

i−1∑
n=0

un(x), (8)

where Ui (x) are unknown functions and un(x) are successive approximations whose solutions are obtained recursively, from

solving the linear part of the equation that results from substituting (8) in the governing equations (6) using u0 (x) as an initial

approximation. The initial approximation is chosen in such a way that it satisfies the boundary conditions (7). A such initial

approximation can be as

u0 (x) = 1. (9)

The linearization technique is based on the assumption that Ui (x) becomes increasingly smaller as i becomes large, that is

l im
i→+∞

Ui (x) = 0. (10)

Substituting (8) in the governing equation (6), and using the Binomial theorem notation, gives

U
′′
i +

2

x + 1
U
′
i −
φ2

4

n∑
s=0

(n
s

)
Un−si

[
i−1∑
k=0

uk

]s
= −

i−1∑
k=0

u
′′
k −

2

x + 1

i−1∑
k=0

u
′
k . (11)

Starting from the initial approximation (9), the subsequent solutions for uk, k ≥ 1 are obtained by iteratively solving the
linearized form of equations (11) which are given as

u
′′
i +

2

x + 1
u
′
i − n

φ2

4
an−1i−1 ui = ϕi−1(x), (12)

u
′
i (−1) = 0, ui (1) = 0, (13)

where

ai−1 =

i−1∑
k=0

uk ,

ϕi−1 = −
i−1∑
k=0

u
′′
k −

2

x + 1

i−1∑
k=0

u
′
k +
φ2

4

(
i−1∑
k=0

uk

)n
.

Once each solution for uk (k ≥ 1)has been obtained, the approximate solution for u (x) is obtained as

u(x) ≈
M∑
k=0

uk(x), (14)

where M is the order of SLM approximation. We remark that the coefficient parameters and the right hand side of equations

(12) for i= 1, 2 , 3,. . ., are known (from previous iterations). Thus, equation (12) can easily be solved using analytical software

such as Maple or Mathematica. As we know Symbolic computing manipulates algebraic expressions exactly, but it is unworkable

for many applications since the space and time requirements tend to grow combinatorially, instead we can use numerical methods

such as finite differences, finite elements, Runge-Kutta based shooting methods or collocation methods. In this work, equation

(12) is solved using the Chebyshev spectral collocation method.
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3. Pseudo-spectral collocation method

Chebyshev polynomials [15] are very useful as orthogonal polynomials on the interval [−1, 1] of the real line. These polynomials
have very good properties in the approximation of functions so that appear frequently in several fields of mathematics, physics

and engineering. Spectral collocation methods [3, 16] based on Chebyshev polynomials (also is called pseudo-spectral method)

have been used to solve numerically differential equations by many authors (see for instance [1, 2, 4, 6, 7, 8, 10, 11]). This

method is accomplished successfully by using Chebyshev polynomials approximation and generating approximations for the higher

order derivatives through successive differentiation of the approximate solution.

The main advantage of spectral methods is their superior accuracy for problems whose solutions are sufficiently smooth functions.

They converge fast compared to algebraic convergence rates for finite difference and finite element methods. In practice this

means that good accuracy can be achieved with fairly coarse discretizations. This method is based on approximating the unknown

functions by the Chebyshev interpolating polynomials in such a way that they are collocated at the Gauss-Lobatto points defined

as

xj = cos
πj

N
, j = 0, 1, . . . , N, (15)

where N is the number of collocation points.

The unknown functions ui are approximated as a truncated series of Chebyshev polynomials

ui (x) ≈ uNi (x) =
N∑
k=0

ũkTk(x), (16)

where Tkis the kth Chebyshev polynomial defined as

Tk (x) = cos
(
kcos−1 (x)

)
, (17)

and the discrete Chebyshev coefficients ũk are determined by the forward discrete Chebyshev transform:

ũk =
2

ckN

N∑
j=0

1

cj
ui (xj)cos

kjπ

N
, (18)

where c0=cN and cj= 1 for j= 1, 2, . . ., N−1.
In Chebyshev pseudo-spectral method the numerical differentiation process performed as the matrix-vector product

u(l) = D(l)u, (19)

where u is the vector of function values and u(l) is vector of approximate derivative values at the nodes {xk} and D(l) is the lth
order Chebyshev differentiation matrix [16]. We express the entries of the Chebyshev differentiation matrix D as

Dkj =
cj
ck

1
2 sin((k+j))π /((2N))sin((k−j)π/2N)) , k ̸= j,

Dkk = − xk
2sin2( kπN )

, k ̸= 0, N,

D00 = −DNN = 2N2+1
6
,

(20)

where ck = (−1)k for k = 1, 2, · · · , N − 1, and, c0 = 1
2 , cN=

(−1)N
2 , also

D(l) = (D)l l = 1 , 2, . . . .

When solving differential equations by pseudo-spectral method, the derivatives are approximated by the discrete derivative

operators and linear two-point boundary value problem may thus be converted to a linear system.

By employing derivatives formulation (12), (13) transformed to the following expression

N∑
k=0

Djkui (xk) +
2

xk + 1

N∑
k=0

Djkui (xk)− n
φ2

4
am−1i−1 (xi) = ϕi−1 (xk ) , 1 ≤ k ≤ N − 1. (21)

Also, we should add two other equations for imposing boundary condition to the above system. So we obtain

Ai−1Ui = ϕi−1,

in which Ai−1 is a (N + 1)× (N + 1) square matrix and Ui−1 and ϕi−1 are a (N + 1)× 1 column vectors defined by

Ui = [ui (x0) , ui (x1) , . . . , ui (xN−1) , ui (xN)] ,

ϕi−1 = [∅i−1 (x0) , ∅i−1 (x1) , . . . , ∅i−1 (xN−1) , ∅i−1 (xN)] ,

Ai−1 = D
2 + diag

(
1

x + 1

)
D − nφ

2

4
diag(am−1i−1 (x)).

Now by solving this linear system we obtain the unknown ui (xk) , k = 0, 1, . . . N.
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Table 1. Comparison of approximate and exact value of C(0) with collocation points N=32 when n=1

φ C(0)(approximate) exact

0.25 0.989658790825327 0.989658790825502

0.5 0.959517375667612 0.959517375667470

0.75 0.912057326419731 0.912057326420212

1 0.850918128239655 0.850918128239323

2 0.551441129543725 0.551441129543566

3 0.299464709006526 0.299464709006468

4 0.146574281303474 0.146574281303462

Table 2. Comparison of approximate and exact value of C(0) with collocation points N=32 when n=5

φ M=2 M=3 M=4 M=5 exact

0.25 0.989945449808219 0.989945449806960 0.989945449806962 0.989945449806969 0.989945449807005

0.5 0.963433054176965 0.963433044002271 0.963433044002275 0.963433044002269 0.963433044002285

0.75 0.927902917900584 0.927901798730157 0.927901798729865 0.927901798729868 0.927901798729866

1 0.889564303037429 0.889543617670041 0.889543617524158 0.889543617524154 0.889543617524132

2 0.758042014143261 0.754152071340470 0.754141435351016 0.754141435281835 0.754141435281767

3 0.684973146416467 0.659657874464967 0.658983343027451 0.658982963292719 0.658982963293183

4 0.654865634924277 0.596254737275574 0.591040504100040 0.591012026803125 0.591012026071536

4. Numerical results

In this section, we show the accuracy and fast convergence of the hybrid method of the SLM and pseudo-spectral collocation

method by comparing the exact analytical solution for some cases of reaction order n and Thiele modulus’. In the case n=1,

the problem (4) is linear boundary differential equation which has exact analytical solution. We apply Chebyshev pseudo-spectral

collocation method by considering N = 32 for obtaining numerical approximation of C(0) for some case of ’ as given in Table

1. In this case, also solutions have been plotted for some Thiele modulus’ in Figure 1. We have provided Table 2 and Figure 2

for n = 5 as well. Tables 3 and 4 in addition Figures 3 and 4 are given for those reaction orders and Thiele modulus for which

the problem (4)-(5) does not have known exact solution.

Remark 1 All results presented in this section can be compared to those exact solutions given by Ref. [9].

Figure 1. Approximate solutions of the problem (4)-(5) with collocation points N=32
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Figure 2. Approximate solutions of the problem (4)-(5) with collocation points N=32

Table 3. Comparison of approximate and exact value of C(0) with collocation points N=32

n φ M=2 M=3 M=4 M=5

2 0.25 0.989732675889290 0.989732675889287 0.989732675889291 0.989732675889289

2 0.75 0.916923510940118 0.916923507252235 0.916923507252238 0.916923507252240

2 1 0.863972286330311 0.863972161422443 0.863972161422451 0.863972161422447

2 2 0.639027322041255 0.638867666886289 0.638867662832321 0.638867662832325

2 3 0.468399301624146 0.465182082036108 0.465178999236353 0.465178999233939

Figure 3. Approximate solutions of the problem (4)-(5) with collocation points N=32

5. Conclusion

In this paper, we have presented a method based on successive linearization method (SLM) and pseudo-spectral collocation

method for obtaining the solution of the problem of diffusion reaction in spherical porous catalyst. We have shown that the SLM

is a robust and reliable technique for obtaining semi-analytical solutions of nonlinear differential equations especially when it is

combined by a numerical powerful method like pseudo-spectral collocation method.
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Table 4. Comparison of approximate and exact value of C(0) with collocation points N=32

n φ M=2 M=3 M=4 M=5

3 0.25 0.989805045304709 0.989805045304675 0.989805045304669 0.989805045304662

3 0.75 0.921087819199368 0.921087754515380 0.921087754515377 0.921087754515377

3 1 0.874219088111702 0.874217370592920 0.874217370592531 0.874217370592532

3 2 0.692126882350104 0.691197300016726 0.691197011571961 0.691197011571934

3 3 0.567061374762437 0.556239841566273 0.556176486852542 0.556176485019289

Figure 4. Approximate solutions of the problem (4)-(5) with collocation points N=32
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