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On the semi-local convergence of the
Homeier method in Banach space for solving
equations

Samundra Regmia, Ioannis K. Argyrosb Santhosh Georgec and
Christopher I. Argyrosd

In this paper we consider the semi-local convergence analysis of the Homeier method for solving nonlinear equation in

Banach space. As far as we know no semi-local convergence has been given for the Homeier under Lipschitz conditions.

Our goal is to extend the applicability of the Homeier method in the semi-local convergence under these conditions. We

use majorizing sequences and conditions only on the first derivative which appear on the method for proving our results.

Numerical experiments are provided in this study.

Copyright c© 2022 Shahid Beheshti University.

Keywords: semi-local convergence; Homeier method; iterative methods; Banach space; convergence criterion.

1. Introduction

We consider the nonlinear equation

G(x) = 0, (1.1)

where G : Ω ⊂ B −→ B1 is an operator acting between Banach spaces B and B1 with Ω 6= ∅. In general a closed form solution

for (1.1) is not possible, so iterative methods are used for approximating a solution x∗ of (1.1). Many iterative methods are

studied for approximating x∗ [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27].

In this study, we consider the Homeier method, defined for n = 0, 1, 2, . . . , by

yn = xn −
1

2
G ′(xn)−1G(xn),

xn+1 = xn − G ′(yn)−1G(xn). (1.2)

The local convergence of the Homeier method was shown to be of order three using Taylor expansion and assumptions on

the fourth order derivative of G, which is not on these methods [13]. So, the assumptions on the fourth derivative reduce the

applicability of these methods [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27].

For example: Let B = B1 = R, Ω = [−0.5, 1.5]. Define λ on Ω by

λ(t) =

{
t3 log t2 + t5 − t4 i f t 6= 0,

0 i f t = 0.

Then, we get t∗ = 1, and

λ′′′(t) = 6 log t2 + 60t2 − 24t + 22.
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Obviously λ′′′(t) is not bounded on Ω. So, the convergence of method (1.2) is not guaranteed by the previous analyses in

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27].

In this study we introduce a majorant sequence and use general continuity conditions to extend the applicability of Homeier

method. Our analysis includes error bounds and results on uniqueness of x∗ based on computable Lipschitz constants not given

before in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27] and in other similar

studies using Taylor series. Our idea is very general. So, it applies on other methods too.

The rest of the study is set up as follows: In Section 2 we present results on majorizing sequences. Sections 3,4 contain the

semi-local and local convergence, respectively, where in Section 4 the numerical experiments are presented. Concluding remarks

are given in the last Section 5.

2. Majorizing Sequences

Let `0 > 0, ` > 0, η > 0 be given parameters with `0 ≤ `. Consider sequences {tn}, {sn} as

t0 = 0, s0 = η,

tn+1 = sn +
2¯̀(1 + `0tn)

(1− `0tn)(1− `0sn)
(sn − tn)2 +

(sn − tn)(1 + `0tn)

1− `0sn
,

sn+1 = tn+1 +
`(2(sn − tn) + (tn+1 − tn))

4(1− `0tn+1)
(tn+1 − tn), (2.1)

where ¯̀=

{
`0, i f n = 0

`, i f n = 1, 2, . . .
.

Next, we present convergence results for sequences {tn}.

LEMMA 2.1 Suppose: Sequence {tn} satisfies

tn ≤ sn <
1

`0
. (2.2)

Then, sequences {tn} converge to its unique least upper bound t∗ ∈ [0, 1
`0

].

Proof. Sequences {tn} is nondecreasing by (2.2), bounded from above by 1
`0

and as such it converges to t∗.

2

3. Semi-local convergence

The hypotheses (H) shall be used. Suppose:

(H1) There exists x0 ∈ Ω and η ≥ 0 such that G ′(x0)−1 exists and

‖G ′(y0)−1G(x0)‖ ≤ η.

(H2)

‖G ′(x0)−1(G ′(v)− G ′(x0))‖ ≤ `0‖v − x0‖

for all v ∈ Ω. Set Ω0 = Ω ∩ U(x0,
1
`0

).

(H3)

‖G ′(x0)−1(G ′(w)− G ′(v)‖ ≤ `‖w − v‖

for all v, w ∈ Ω0.

(H4) Hypotheses of Lemma 2.1 hold.

and

(H5) U[x0, t
∗] ⊂ Ω.

Next, the semi-local convergence follows.

THEOREM 3.1 Suppose the hypotheses (H) hold. Then, the following items hold

{xn} ∈ U(x0, t
∗) (3.1)

‖x∗ − xn‖ ≤ t∗ − tn, (3.2)

for some x∗ ∈ U[x0, t
∗] and F (x∗) = 0.
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Proof. Mathematical induction is used to show

‖yk − xk‖ ≤ sk − tk (3.3)

and

‖xk+1 − yk‖ ≤ tk+1 − sk . (3.4)

By method (1.2) and (H4) one gets

‖y0 − x0‖ = ‖G ′(x0)−1G(x0)‖ ≤ η = s0 − t0 = s0 = η ≤ η

1− β ,

so (3.3) holds for n = 0 and y0 ∈ U(x0, t
∗).

Let z ∈ U(x0, t
∗). Then, using (H2) one obtains

‖G ′(x0)−1(G ′(z)− G ′(x0))‖ ≤ `0‖z − x0‖
≤ `0t

∗ < 1, (3.5)

so

‖G ′(z)−1G ′(x0)‖ ≤ 1

1− `0‖z − x0‖
(3.6)

follows from the Lemma on invertible linear operators due to Banach [17]. Hence, G ′−1(y0) ∈ L(B1, B) and x1 is well defined.

xk+1 = yk +
1

2
(G ′−1(xk)− G ′−1(yk))G(xk) +

1

2
G ′−1(yk)G(xk),

xk+1 − yk =
1

2
G ′−1(xk)(G ′(yk)− G ′(xk))G ′−1(yk)(−2G(xk))(yk − xk)

−1

2
G ′−1(xk)(−2G(xk))(yk − xk). (3.7)

So, by (3.6) (for z = x0, y0), (H2) and the definition of the sequence {tk} one gets

‖xk+1 − yk‖ ≤ `‖yk − xk‖2(1 + `0‖xk − x0‖)
(1− `0‖x0 − x0‖)(1− `0‖yk − x0‖)

+
(1 + `0‖xk − yk‖)‖yk − xk‖

1− `0‖yk − x0‖

≤
¯̀(sk − tk)2(1 + `0tk)

(1− `0tk)(1− `0sk)
+

(1 + `0tk)(sk − tk)

1− `0sk
= tk+1 − sk . (3.8)

By the second substep of method (1.2)

G(xk+1) ≤ G(xk+1)− G(yk)− G ′(yk)(xk+1 − xk)

=

∫ 1

0

(G ′(xk + θ(xk+1 − xk))dθ − G ′(yk))(xk+1 − xk), (3.9)

so

‖yk+1 − xk+1‖ ≤ 1

2
‖(G ′(xk+1)−1G ′(x0)G ′(x0)−1G(xk+1)‖

≤ 1

2

(`‖yk − xk‖+ `
2
‖xk+1 − xk‖)‖xk+1 − xk‖

1− `0‖xk+1 − x0‖

≤ 1

2

(`(sk − tk) + `
2

(tk+1 − tk)(tk+1 − tk)

1− `0tk+1

= sk+1 − tk+1, (3.10)

where we also used (3.6) for z = xk+1. Hence, sequence {xn} is complete in Banach space B, so limn−→∞ xn = x∗ ∈ U[x0, t
∗]. Using

(3.9) we deduce limk−→∞ ‖G ′(x0)−1G(xk+1)‖ ≤ 1
2

limk−→∞(`(sk − tk) + `
2

(tk+1 − tk)(tk+1 − tk) = 0. Hence, by the continuity of

G it follows that G(x∗) = 0.

2

A uniqueness of the solution result is presented.

PROPOSITION 3.2 Assume:

(1) x∗ is a simple solution of (1.1).

(2) There exists τ ≥ t∗ so that

`0(t∗ + τ) < 2. (3.11)

Set Ω1 = Ω ∩ U[x∗, τ ]. Then, x∗ is the unique solution of equation (1.1) in the domain Ω1.

Comput. Math. Comput. Model. Appl. 2022, Vol. 1, Iss. 1, pp. 63–68 Copyright c© 2022 Shahid Beheshti University. 65



Computational Mathematics and Computer Modeling with Applications S. Regmi et al.

Proof. Let q ∈ Ω1 with G(q) = 0. Define M =
∫ 1

0
G ′(q + θ(x∗ − q))dθ. Using (H2) and (3.11) one obtains

‖G ′(x0)−1(M − G ′(x0))‖ ≤ `0

∫ 1

0

((1− θ)‖q − x0‖+ θ‖x∗ − x0‖)dθ ≤
`0

2
(t∗ + τ) < 1,

so q = x∗, follows from the invertability of M and the identity M(q − x∗) = G(q)− G(x∗) = 0− 0 = 0.

2

Another convergence result can be given if we rewrite method (1.2) as

xn+1 = xn − G ′(xn −
1

2
G ′(xn)−1G(xn))−1G(xn). (3.12)

Define parameter

r0 = min{2− `(η + η0)− `0η

2`0
,

2η0 − `(η + η0)η

2`0η0
}

to be determined later and function δ

δ = δ(t) =
`(η + η0)

2(1− `0(t + η
2

))
.

Then, we present a second semi-local convergence result for method (1.2).

THEOREM 3.3 Suppose:

(a) There exist x0 ∈ Ω, η0 > 0 such that G ′(xn − 1
2
G ′(xn)−1G(xn))−1 ∈ L(B1, B) and

‖G ′(xn −
1

2
G ′(xn)−1G(xn))−1G(x0)‖ ≤ η0.

(b) `0η + `(η + η0) < 2, `(η + η0)η < 2η0.

(c) Condition (H1), (H2) and (H3) hold and

(d) U[x0, r0] ⊂ Ω.

Then, sequence {xn} generated by (3.12) is well defined in U(x0, r0), remains in U(x0, r0) and converges to a solution x∗ ∈ U[x0, r0]

of equation G(x) = 0, so that

‖xn+1 − xn‖ ≤ `(‖xn − xn−1‖+ ‖G ′(xn−1)−1G(xn−1)‖)‖xn − xn−1‖
2(1− `0(‖xn − x0‖+ 1

2
‖G ′(xn−1)−1G(xn)‖)

≤ δ‖xn − xn−1‖ ≤ δn‖x1 − x0‖ ≤ δnη, (3.13)

and

‖x∗ − xn‖ ≤
δnη

1− δ . (3.14)

Proof. As in the proof of Theorem 3.1 we can write

G(xk+1) ≤ G(xk+1)− G(xk) + G(xk)

=

∫ 1

0

(G ′(xk + θ(xk+1 − xk))dθ − G ′(xk −
1

2
G ′(xk)−1G(xk)))(xk+1 − xk),

so

‖G ′(x0)−1G(xk+1)‖ ≤ `

2
(‖xk+1 − xk‖+ ‖G ′(xk)−1G(xk)‖)‖xk+1 − xk‖. (3.15)

We also have for x ∈ U(x0, r), r ∈ (0, r0)

‖G ′(x0)−1(G ′(x − 1

2
G ′(x)−1G(x))− G ′(x0)) ≤ `0(‖x − x0‖+

1

2
‖G ′(x)−1G(x)‖)

≤ `0(r +
η

2
)

< `(r0 +
η

2
) < 1,

by the choice of r0 and r, so

‖G ′(x)−1G ′(x0)‖ ≤ 1

1− `0(‖xk − x0‖+ η
2

)
. (3.16)
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Hence, by method (3.12), (3.15) and (3.16) we obtain (3.13), where we also used

‖G ′(xk)−1G(xk)‖ ≤ `(δ‖xk − xk−1‖+ η0)‖xk − xk−1‖
2(1− `0‖xk − x0‖)

≤ `(η + η0)η

2(1− `0r)
≤ η0, (3.17)

by (3.16) and the choice of r0. Hence, estimate (3.13) holds, and sequence {xk} is fundamental. So there exists x∗ ∈ U[x0, r0]

such that limk−→∞ xk = x∗. By letting k −→∞ in (3.15), we deduce G(x∗) = 0. Moreover, let m ≥ 0, then by (3.13)

‖xk+m − xk‖ ≤ ‖xk+m − xk+m−1‖+ ‖xk+m−1 − xk+m−2 + . . .+ ‖xk+1 − xk‖
≤ (δk+m−1 + . . .+ δk)η

= δk
1− δm

1− δ η. (3.18)

By letting m −→∞ in (3.18) we obtain (3.14).

The uniqueness result for the solution x∗ is identical to Proposition 3.2.

2

4. Numerical Experiments

We provide some examples in this section.

EXAMPLE 4.1 Define function

h(t) = ξ0t + ξ1 + ξ2 sin ξ3t, x0 = 0,

where ξj , j = 0, 1, 2, 3 are parameters. Choose ψ0(t) = L0t and ψ(t) = Lt. Then, clearly for ξ3 large and ξ2 small, L0
L

can be

small (arbitrarily). Notice that L0
L
−→ 0.

EXAMPLE 4.2 Let B = B1 = C[0, 1] and Ω = U[0, 1]. It is well known that the boundary value problem [11].

ς(0) = 0, (1) = 1,

ς ′′ = −ς − σς2

can be given as a Hammerstein-like nonlinear integral equation

ς(s) = s +

∫ 1

0

Q(s, t)(ς3(t) + σς2(t))dt

where σ is a parameter. Then, define G : Ω −→ B1 by

[G(x)](s) = x(s)− s −
∫ 1

0

Q(s, t)(x3(t) + σx2(t))dt.

Choose ς0(s) = s and Ω = U(ς0, ρ0). Then, clearly U(ς0, ρ0) ⊂ U(0, ρ0 + 1), since ‖ς0‖ = 1. Suppose 2σ < 5. Then, conditions

(A) are satisfied for

L0 =
2σ + 3ρ0 + 6

8
, L =

σ + 6ρ0 + 3

4
,

and η = 1+σ
5−2σ

. Notice that L0 < L [5].

5. Conclusion

The semi-local convergence of Homeier method of order three is extended using general conditions on G ′ and recurrent majorizing

sequences.
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7. I.K. Argyros and A. A. Magréñan. A contemporary study of iterative methods. Elsevier (Academic Press), New York, 2018.

8. R. Behl, P. Maroju, E. Martinez and S. Singh. A study of the local convergence of a fifth order iterative method. Indian J. Pure

Appl. Math., 51(2):439-455, 2020.
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15. A. A. Magréñan, I. K. Argyros, J. J. Rainer and J. A. Sicilia. Ball convergence of a sixth-order Newton-like method based on means

under weak conditions. J. Math. Chem., 56:2117-2131, 2018.
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