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tensors
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A tensor is called semi-symmetric if all modes but one, are symmetric. In this paper, we study the CP decomposition of

semi-symmetric tensors or higher-order individual difference scaling (INDSCAL). Comon’s conjecture states that for any

symmetric tensor, the CP rank and symmetric CP rank are equal, while it is known that Comon’s conjecture is not true in the

general case but it is proved under several assumptions in the literature. In the paper, Comon’s conjecture is extended for

semi-symmetric CP decomposition and CP decomposition of semi-symmetric tensors under suitable assumptions. Specially,

we show that if a semi-symmetric tensor has a CP rank smaller or equal to its order, or when the semi-symmetric CP rank

is less than/or equal to the dimension, then the semi-symmetric CP rank is equal to the CP rank. Copyright c© 2022 Shahid

Beheshti University.
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1. Introduction

While tensors have been in use from the early 20th century [16], the interest in tensors in the recent decade has increased

significantly and tensors are applied in many different fields [21, 20, 5, 15, 2, 3]. This increasing interest is partly due to the fact

that there exists a rising demand for modeling and solving more complicated problems and the fact that the computing power

of computers has risen significantly in the recent decade.

Tensors have been used in various problem models and disciplines. Tensor decompositions are utilized in extracting the useful

information on model entities interactions. For example, in DNA microarray data modeling using a third-order tensor, tensor

decompositions can provide useful information about the genes [19].

Different types of tensor decompositions have been defined and used in literature [16]. Here, our focus is on CP decomposition

and higher-order INDSCAL. Since their introduction, tensor decompositions have been used in psychometrics, chemometrics,

signal processing, image processing and solving nonlinear systems of equations [21, 16, 22, 4].

It is known that for symmetric matrices, the rank and symmetric rank coincide, but this is not generally true for tensors. In

2008, Comon et. al conjectured that for any symmetric tensor, the CP rank and symmetric CP rank are equal [9], then they

proceeded to prove this conjecture for special cases such as when the CP rank is less than dimension or when the CP symmetric

rank is less than 3. This conjecture was later called “Comon’s Conjecture” [28] and it was proved under different assumptions,

afterwards Shitov proved that Comon’s conjecture cannot be true in the general case [24]. Friedland proved Comon’s conjecture

for special cases using the rank of matricized forms [13] and Seigal proved it for cubic surfaces [23]. Also, in [28], Comon’s

conjecture was proved for the case of rank of the symmetric tensor is not greater than its order. Casarotti et al. investigated

the additional aspects of Comon’s conjecture [7].

It can be proved that for any tensorA, it has a close relationship with a semi-symmetric tensor (for example both have the same

set of eigenvalues). This corresponding semi-symmetric tensor can be used for developing methods for calculating eigenvalues
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[18]. Also, third-order semi-symmetric tensors and their CP decomposition (INDSCAL) have applications in psychometric, social

sciences and signal processing [27, 8].

In this paper, some results which previously were given for symmetric CP decomposition [9, 28] will be extended for the

case of the semi-symmetric CP decomposition. This means that the semi-symmetric version of Comon’s conjecture is proved

to be true under certain assumptions similar to those used in [9, 28] for symmetric case. We will prove that the CP rank and

semi-symmetric CP rank are identical when the CP rank of a tensor is smaller or equal to the order of tensor (Theorem 1 and

Theorem 2 ) or when the semi-symmetric CP rank is equal or less than the dimension of the tensor (Theorem 3). At the end

of paper, we also extend the results for non-cubic semi-symmetric tensors.

The rest of the paper is organized as follows. Section 2 contains preliminaries on the semi-symmetric tensors, rank

decomposition of tensors and other basic information. In Section 3, under assumption that the CP rank of a semi-symmetric

tensor is not greater than its order or when the semi-symmetric CP rank is not greater than the dimension, we prove that the

CP semi-symmetric rank is equal to the CP rank. Lastly, in Section 4, conclusions and future work are presented.

2. Preliminaries

In this paper, we denote tensors by calligraphic letters, the order of a tensor is denoted by m and n denotes the dimension of a

cubic tensor. For more information about the notations, see [16]. For two non-zero vectors a and b, a ∼ b if and only if a = µb

for a scalar µ, otherwise a 6∼ b. A tensor in F J×J×...×J (F can be the set of complex or real numbers) is called semi-symmetric if its

elements are invariant under any permutation of all indices but the first one. More formally, A ∈ F J×J×...×J is a semi-symmetric

tensor if and only if A(i , :, ..., :) is symmetric for any i ∈ {1, ..., J}. The set of mth-order n-dimensional semi-symmetric tensors

is denoted by Sm1 (F n).

Definition 1 If A ∈ F I1×I2×...×Im is an mth-order tensor and B ∈ F J×In (n ≤ m) is a matrix, then A×n B denotes mode-n product

of A with B. This product is of size I1 × ...× In−1 × J × In+1 × ...× Im and each element of it is defined as follows

(A×n B)i1...in−1 j in+1...im =

In∑
in=1

a(i1, i2..., im)b(j, in).

We next present some properties of these products which will be used in developing our theory. Some of the proofs and further

details that are not included here can be found in [16, 11].

Proposition 1 Suppose X ∈ F I1×I2×...×Im is an mth-order tensor and A ∈ F J×Ii , y ∈ F Ii , z ∈ F Ij then

1) If B ∈ FK×J , then

X ×n A×n B = X ×n (BA).

2) If B ∈ F Ij×J and i 6= j , then

X ×i A×j B = X ×j B ×i A.

Definition 2 Let A = [a(i1, i2, ..., im)] where a(i1, i2, ..., im) ∈ F , i1, i2, ..., im ∈ {1, 2, ..., n} be an mth-order tensor and x =

(x1, x2, ...xn)t be a vector in F n, then for 1 ≤ r ≤ m − 1, the tensor multiplication by a vector is defined as follows:

(
Axm−r

)
i1...ir

:=

n∑
ir+1,...,im=1

a(i1, i2, ..., im)xir+1xir+2 ...xim .

Note that by the above definition, Axm, Axm−1 and Axm−2 are a scalar, vector and matrix, respectively.

For every tensor A there exists a corresponding semi-symmetric tensor B such that for every vector x ,

Axm−1 = Bxm−1.

Tensor B inherits many properties and has a close relationship with A (A is called the mother tensor). See [18, p. 630] for the

definition and more details.

Definition 3 The outer product of vectors a(1), a(2), ..., a(m) is denoted by a(1) ◦ a(2) ◦ ... ◦ a(m) and defined as follows

(a(1) ◦ a(2) ◦ ... ◦ a(m))i1 i2...im = a
(1)
i1
× a(2)i2 × ...× a

(m)
im
.
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Definition 4 Let A ∈ F I1×I2×...×Im be an mth-order tensor. A CP decomposition is defined as

A = [[A(1), A(2), ..., A(m)]] ≡
R∑
r=1

a(1)r ◦ a(2)r ◦ ... ◦ a(m)r (1)

in which, A(i), 1 ≤ i ≤ m is an Ii × R matrix and a
(i)
r is the i-th column of A(i). Operation ◦ represents the outer product of

vectors as defined above. Thus each element of A can be written as xi1 i2...iN =
R∑
r=1

a
(1)
i1r
a
(2)
i2r
...a

(m)
imr

. For a tensor such as A, the

smallest number R in (1) is called the CP rank of A and the corresponding decomposition is called a CP rank decomposition.

Every A(i) is called a factor matrix.

Definition 5 Let A ∈ F I×I×...×I be an mth-order semi-symmetric tensor. A semi-symmetric CP decomposition is defined as

A =

R∑
r=1

ar ◦ br ◦ ... ◦ br (2)

in which, ar and br are vectors. The smallest number of R which generates A exactly, is called the semi-symmetric CP rank of

A and the corresponding decomposition is called a semi-symmetric CP rank decomposition.

The semi-symmetric CP decomposition of a third-order tensor is also called INDSCAL [16, 12]. The semi-symmetric CP

decomposition of tensors with orders greater than three can be called higher-order INDSCAL [26]. Also, note that for a vector

such as b, we define that b ◦ ... ◦ b︸ ︷︷ ︸
k times

:= b◦k .

If {v1, v2, ..., vR} ∈ F q is a linearly independent vector set, then there are functionals φ1, ..., φR ∈ (F q)∗ such that

φj(vi) = δi j for i , j = 1, ..., R.

where δ is the Kronecker delta function. Then, suppose that

I = {j1, ..., js} ( {1, ..., m},

vi = a
(j1)
i ◦ a(j2)i ◦ ... ◦ a(js )i , i = 1, ..., R.

Supposing that {v1, v2, ..., vR} is a linearly independent set, contracting A =
R∑
r=1

a
(1)
r ◦ a(2)r ◦ ... ◦ a(m)r by functional φj in I-modes

is defined as follows

A.Iφk =

R∑
r=1

φk(vr )a
(i1)
r ◦ a(i2)r ◦ ... ◦ a(im−s )r = a

(i1)
k ◦ a

(i2)
k ◦ ... ◦ a

(im−s )
k ,

where {i1, i2, ..., im−s} = {1, ..., m} \I. If A is symmetric then A.Iφk is symmetric. If A is semi-symmetric and 1 ∈ I, then A.Iφk
is symmetric, if 1 /∈ I, then A.Iφk is semi-symmetric.

Proposition 2 Let A ∈ F I1×I2×...×Im be an mth-order tensor with decomposition (1) and P be a J × Ik matrix. Then,

A×k P =

R∑
r=1

a(1)r ◦ a(2)r ◦ ... ◦ a(k−1)r ◦ Pa(k)r ◦ a(k+1)r ◦ ... ◦ a(m)r .

Proof. It follows from the linearity of the nth-mode tensor-matrix product. �

Proposition 3 Let A be a semi-symmetric mth-order n-dimensional tensor with decomposition (1). Then, there is always a

semi-symmetric CP decomposition for A.

Proof. This proposition can be proved by using the fact that the set of tensors a ◦ T for vectors a and symmetric tensors T

spans the ambient space. �
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3. Rank decomposition and semi-symmetric rank decomposition

In this section, we prove that for a semi-symmetric tensor, the CP rank is equal to the CP semi-symmetric rank under some

assumptions. This is analogous to the Comon’s conjecture for symmetric tensors [28, 9] and actually we extend results given in

[28, 9] for semi-symmetric tensors.

Since for an arbitrary tensor, the semi-symmetric tensor can be easily calculated and it contains many features of its mother

tensor, investigating the properties of semi-symmetric tensors can help us to analyse tensors better. In addition, the decomposition

of semi-symmetric tensors (especially third-order tensors) has applications, too [8, 25].

We begin by stating results and lemmas which are useful for proving the final theorems. The proof of the following proposition

can be found in [17, p.68, Proposition 3.1.3.1.].

Proposition 4 [17, p.68, Proposition 3.1.3.1] Let A(1) ◦ A(2) ◦ · · · ◦ A(m) (m > 2 and A(i), 1 ≤ i ≤ m is a finite-dimensional vector

space) be the set of tensors that can be decomposed in the form of
R∑
r=1

a
(1)
r ◦ a(2)r ◦ ... ◦ a(m)r where a

(i)
r is a member of A(i). Let

A ∈ A(1) ◦ A(2) ◦ · · · ◦ A(m) have rank h. If A ∈ B(1) ◦ B(2) ◦ · · · ◦ B(m) where B(i) ⊆ A(i) with at least one inclusion proper, then

any decomposition A =
ρ∑
r=1

a
(1)
r ◦ a(2)r ◦ ... ◦ a(m)r with some a

(s)
j /∈ B(s) has ρ > h.

Lemma 1 Let A ∈ Sm1 (F n) and let (1) be a CP rank decomposition of A where R ≥ 2. If Lj := span{a(j)1 , ..., a
(j)
R } for

j ∈ {2, 3, ..., m}, then for every i ∈ {1, ..., R} and k ∈ {2, ..., m}, a(k)i ∈ Lj .

Proof. This lemma is a direct consequence of Proposition 4 �

Lemma 2 Let A ∈ Sm1 (F n) and let (1) be a CP rank decomposition of A where R ≥ 2. Then there exists no k ∈ {2, ..., m}
such that a

(k)
i ∼ a

(k)
j for every i , j ∈ {1, 2, ..., R}.

Proof. Suppose there exists an index k ∈ {2, ..., m} such that a
(k)
i1
∼ a(k)i2 for every i1, i2 ∈ {1, 2, ..., R}. We define Lk :=

span{a(k)1 , ..., a
(k)
R }, then by assumption, the dimension of Lk is one. By Lemma 1, for every i ∈ {1, ..., R} and j ∈ {2, ..., m},

a
(j)
i ∈ Lk . Therefore, for every i ∈ {1, ..., R} and j ∈ {2, ..., m}, we have a

(j)
i ∼ a

(k)
1 and

A =

R∑
r=1

a(1)r ◦ a(2)r ◦ ... ◦ a(m)r =

R∑
r=1

cra
(1)
r ◦ a(k)1 ◦ ... ◦ a

(k)
1 =

(
R∑
r=1

cra
(1)
r

)
◦ a(k)1 ◦ ... ◦ a

(k)
1

where each ci , i ∈ {1, 2, ..., n} is a scalar. This is a contradiction to R ≥ 2, thus the proof is completed. �
The next lemma is the first step for establishing when the semi-symmetric CP rank decomposition coincides with the CP rank

decomposition.

Lemma 3 If a tensor A in Sm1 (F n) (m ≥ 3) has a CP rank of 1, then every CP rank decomposition is a semi-symmetric CP

rank decomposition of A.

Proof. Since the CP rank decomposition of A is 1, then

A = a(1) ◦ a(2) ◦ ... ◦ a(m).

Since A is semi-symmetric, then fixing all indices of A but two of them (of which none is the first index) results in having

a symmetric matrix, therefore a
(2)
r ∼ a(i)r for i = 2, 3, ..., m and thus the CP rank decomposition is a semi-symmetric CP rank

decomposition of A.

�

Lemma 4 Suppose A is a tensor in Sm1 (F n) with a CP rank of 2. If m > 3, then every CP rank decomposition is a semi-symmetric

CP rank decomposition of A. If m = 3, then the semi-symmetric CP rank is also 2.

Proof. We have

A =

2∑
r=1

a(1)r ◦ a(2)r ◦ ... ◦ a(m)r .
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For m > 3, from Lemma 2, we know that a
(k)
1 6∼ a

(k)
2 for k ∈ {2, 3, ..., m}, therefore {a(k)1 , a

(k)
2 } is a linearly independent set for

every k ∈ {2, 3, ..., m}. Fixing a k ∈ {2, 3, ..., m}, there are functionals φ1, φ2 such that φi(a
(k)
1 ) = δik , then we have

A.kφi =

2∑
r=1

φi(a
(k)
r )a(1)r ◦ a(2)r ◦ ... ◦ a(k−1)r ◦ a(k+1)r ◦ ... ◦ a(m)k

= a
(1)
i ◦ a

(2)
i ◦ ... ◦ a

(k−1)
i ◦ a(k+1)i ◦ ... ◦ a(m)i

which is a semi-symmetric rank-1 tensor. We deduce from the first part of proof that a
(j1)
i ∼ a(j2)i for j1, j2 ∈ {2, ..., m} and

j1, j2 6= k. Repeating the same procedure for a different k, we can achieve that a
(j1)
i ∼ a(j2)i for j1, j2 ∈ {2, ..., m}.

For m = 3, if Dim
(

Span
({
a
(1)
1 , a

(1)
2

}))
= 1, then

A =

2∑
r=1

a(1)r ◦ a(2)r ◦ a(3)r = ar ◦ (

2∑
r=1

a(2)r ◦ a(3)r ).

Since (
2∑
r=1

a
(2)
r ◦ a(3)r ) is a symmetric matrix and we know that the rank and the symmetric rank for a symmetric matrix are equal

[28], therefore the semi-symmetric rank is two.

If Dim
(

Span
({
a
(1)
1 , a

(1)
2

}))
= 2, then a

(1)
1 and a

(1)
2 are linearly independent. Thus, there are functionals φ1, φ2 such that

φi(a
(k)
1 ) = δik . The rest of proof is similar to that of of m > 3 case. �

The next two theorems establish one of our main results.

Theorem 1 If A ∈ Sm1 (F n) (m ≥ 3) and the CP rank of A is equal to m, then the semi-symmetric CP rank of A is also m.

Proof. Suppose (1) is the CP rank decomposition of A. We define E2 = Dim
(

Span
({
a
(2)
1 , a

(2)
2 , ..., a

(2)
R

}))
. The following

cases are possible.

By Lemma 1 and 2, E2 = 1 cannot occur. Thus we have the possible cases (i) E2 ≥ 3 and (ii) E2 = 2.

Case (i): By [28, Lemma 3.1], the set
{
a
(2)
r ◦ a(3)r ◦ ... ◦ a(m)r |r = 1, ..., R

}
is linearly independent. Therefore, using [28,

Lemma 3.5], there is a j3 ∈ {3, ..., m} such that

E3 = Dim
(

Span
({
a
(2)
1 ◦ a

(j3)
1 , a

(2)
2 ◦ a

(j3)
2 , ..., a

(2)
R ◦ a

(j3)
R

}))
> E2.

Continuing in this manner, we can find an ordered index set Is = {2, j3, ..., js} such that m = R = Es > Es−1 > · · · > E2 ≥ 3

and Ek ≥ k + 1, k = 2, ..., s and s < R, where

Ek = Dim
(

Span
({
a
(2)
i ◦ a

(j3)
i ◦ · · · ◦ a(jk )i |i = 1, 2, ..., R

}))
, k = 2, ..., s.

From Es ≥ s + 1, we know that s ≤ R − 1 = m − 1. We define Is := {2, ..., m} \Is = {js+1, ..., jm}, define

B(1)i ,k := a
(2)
i ◦ a

(j3)
i ◦ · · · ◦ a(jk )i , B(2)i ,k := a

(jk+1)

i ◦ a(jk+2)i ◦ · · · ◦ a(jm)i ,

for k = 2, ..., s. Then, we can write,

A =

R∑
i=1

a
(1)
i ◦ B

(1)
i ,s ◦ B

(2)
i ,s .

By construction,
{
B(1)1,s , ...,B

(1)
R,s

}
is linearly independent. Therefore, there exist functionals {φ1, ..., φR} such that they are dual

for
{
B(1)1,s , ...,B

(1)
R,s

}
. Contracting A by functional φj in Is -modes gives

A.Isφj =

R∑
i=1

a
(1)
i ◦ φj(B

(1)
i ,s )B(2)i ,s = a

(1)
j ◦ B

(2)
j,s .

It is clear that a
(1)
j ◦ B

(2)
j,s is a semi-symmetric tensor. Using Lemma 3, we have a

(jt )
i ∼ a(jm)i for t = s + 1, ..., m. Thus, for

i = 1, 2, ..., R, there exists a yi ∈ F n such that B(2)i ,s = βiy
◦(m−s)
i where βi is a scalar. Using this, we can write

A =

R∑
i=1

βia
(1)
i ◦ B

(1)
i ,s ◦ y

◦(m−s)
i =

R∑
i=1

βia
(1)
i ◦ B

(1)
i ,s−1 ◦ a

(js )
i ◦ y

◦(m−s)
i
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which is a CP rank decomposition. From [28, Lemma 3.1],{
a
(1)
i ◦ B

(1)
i ,s−1 ◦ y

◦(m−s)
i |i = 1, 2, ..., R

}
is linearly independent. Using [28, Lemma 3.5], we can deduce that{

a
(1)
i ◦ B

(1)
i ,s−1 ◦ y

◦(R−Es−1)
i |i = 1, 2, ..., R

}
is linearly independent. Then, we can find the set of functionals {ψ1, ..., ψr} such that

ψi

(
a
(1)
j ◦ B

(1)
j,s−1 ◦ y

◦(R−Es−1)
j

)
= δi j for i , j = 1, ..., R. Therefore,

A.(Is−1∪{js+1})ψi =

R∑
j=1

ψi

(
a
(1)
j ◦ B

(1)
j,s−1 ◦ y

◦(R−Es−1)
j

)
y
◦(m−s−(R−Es−1))
j ◦ a(js )j

= y
◦(m−s−(R−Es−1))
i ◦ a(js )i

which is a symmetric tensor of rank one. Thus, we have a
(js )
i ∼ yi , then

A =

R∑
i=1

γia
(1)
i ◦ B

(1)
i ,s−1 ◦ y

◦(m−s+1)
i

where γi is a scalar for i = 1, ..., R. In a similar manner, we can repeat this process from s − 1 down to 3, then we have

A =

R∑
i=1

δia
(1)
i ◦ a

(2)
i ◦ y

◦(m−2)
i =

R∑
i=1

δia
(1)
i ◦ y

◦(m−2)
i ◦ a(2)i .

Considering s = 2, since
{
a
(1)
i ◦ y

◦(m−2)
i |i = 1, 2, ..., R

}
is linearly independent, we can repeat the process and achieve that

a
(2)
k ∼ yk and therefore, the CP decomposition is semi-symmetric.

Case (ii): We define d = Dim
(

Span
({
a
(1)
1 , a

(1)
2 , ..., a

(1)
R

}))
, if d ≥ 3, for m = 3, we have that {a(1)1 , a

(1)
2 , a

(1)
3 } are linearly

independent and the rest of proof is similar to that of Lemma 4. If m > 3, similar to case E2 ≥ 3, there exists an index set

Is = {1, j2, ..., js} such that m = R = E ′s > E ′s−1 > · · · > E ′2 > d ≥ 3 and E ′k ≥ k + 2, k = 2, ..., s and s < R − 1, where

E ′k = Dim
(

Span
({
a
(1)
i ◦ a

(j2)
i ◦ · · · ◦ a(jk )i |i = 1, 2, ..., R

}))
, k = 2, ..., s.

It can be seen that s ≤ m − 2, the rest of the proof is similar to E2 ≥ 3 case (also see [28, Lemma 4.1] ).

Suppose d = 1, then there exists a vector a such that a
(1)
i ∼ a for i = 1, 2, ..., R. We define

B :=

m∑
r=1

a(2)r ◦ ... ◦ a(m)r .

Since A is semi-symmetric, B is symmetric and by definition, the CP rank of B is less than or equal to m. Using the proof given

for [28, Theorem 4.2], there exists a symmetric binary tensor Γ such that the CP rank of B and Γ are equal. From [28, Lemma

3.11], we know that the CP rank of Γ is less than or equal to m − 1. Therefore the CP rank of B is p ≤ m − 1, then

B =

m∑
r=1

a(2)r ◦ ... ◦ a(m)r =

p∑
r=1

b(2)r ◦ ... ◦ b(m)r =⇒

A =

m∑
r=1

a ◦ a(2)r ◦ ... ◦ a(m)r = a ◦

(
m∑
r=1

a(2)r ◦ ... ◦ a(m)r

)
= a ◦ B

= a ◦

(
p∑
r=1

b(2)r ◦ ... ◦ b(m)r

)
=

p∑
r=1

a ◦ a(2)r ◦ ... ◦ a(m)r

which is a contradiction to m being the minimal rank. Therefore, d cannot equal to one.

If d = 2, from Lemma 1, since E2 = 2, we have

Dim
(

Span
({
a
(i)
j |i ∈ {2, ..., m}, j ∈ {1, 2, ..., R}

}))
= 2.
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Then, there exist two linearly independent vectors p1, p2 such that for i ∈ {2, ..., m}, j ∈ {1, 2, ..., R}, a(i)j = Pb
(i)
j where

P = [p1, p2]. Also, from d = 2, we know there are two linearly independent vectors q1, q2 such that for i ∈ {2, ..., m}, a(1)j = Qb
(1)
j

where Q = [q1, q2]. Therefore, we have

A =

R∑
r=1

a(1)r ◦ a(2)r ◦ . . . ◦ a(m)r

=

R∑
r=1

Qb(1)r ◦ Pb(2)r ◦ . . . ◦ Pb(m)r

= (

R∑
r=1

b(1)r ◦ b(2)r ◦ . . . ◦ b(m)r )×m P ×m−1 P...×2 P ×1 Q.

Let

L =

R∑
r=1

b(1)r ◦ b(2)r ◦ . . . ◦ b(m)r

Then, L is an mth-order 2-dimensional tensor. We want to prove that the CP rank and the semi-symmetric CP rank of L and

A are equal.

If a tensor is multiplied in any mode by an invertible square matrix, then the CP rank won’t change (see [6, Theorem 3.10

and Theorem 3.12]). Thus, if A is multiplied in any mode invertible square matrices, then the semi-symmetric CP rank won’t

change.

Obviously, P and Q are n × 2 rank-two matrices, therefore there are two n × n square invertible matrices C and D such that

CP = DQ =


1 0

0 1

0 0
...

...

0 0

 = [e1, e2].

Thus, using Proposition 2, we have

A×m C ×m−1 C...×2 C ×1 D = L ×m CP ×m−1 CP...×2 CP ×1 DQ
= L ×m [e1, e2]×m−1 [e1, e2]...×2 [e1, e2]×1 [e1, e2]

=

R∑
r=1

[e1, e2]b
(1)
r ◦ [e1, e2]b

(2)
r ◦ ... ◦ [e1, e2]b

(m)
r

=

R∑
r=1


(b
(1)
r )1

(b
(1)
r )2
0
...

0

 ◦


(b
(2)
r )1

(b
(2)
r )2
0
...

0

 ◦ ... ◦


(b
(m)
r )1

(b
(m)
r )2
0
...

0

 .

Therefore the CP rank of L is equal to CP rank of A. The same argument can be used for the semi-symmetric CP rank of L
and we can deduce that this rank is also equal to that of A.

By Proposition 3, there exists a semi-symmetric CP decomposition for L, that is, there exists vectors ar and br for r = 1, ..., T

such that

L =

T∑
r=1

ar ◦ b◦m−1r .

From [28, Lemma 3.1], we see that
{
b◦m−1r |r = 1, 2, ..., T

}
is a linearly independent set. On other hand, for every r = 1, 2, ..., T ,

b◦m−1r is a symmetric (m − 1)th-order 2-dimensional tensor and therefore it has, at maximum, m distinct members (every mth-

order n-dimensional symmetric tensors have

(
n +m − 1

m

)
distinct components [1]). Thus, T ≤ m which means that the

semi-symmetric CP rank of A is less than/or equal to m and since the CP rank of A is m, semi-symmetric CP rank of A is

equal to m. �

Theorem 2 If A ∈ Sm1 (F n) (m ≥ 3) and the CP rank of A is R < m, then the CP rank of A is equal to its semi-symmetric CP

rank.
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Proof. There are two cases (i) R ≤ 2 and (ii) R > 2.

Case (i): For the rank less than 3, from Lemma 3 and Lemma 4, we have the result.

Case (ii): Suppose that (1) is the CP rank decomposition of A with R > 2. We define

E1 = Dim
(

Span
({
a
(1)
1 , a

(1)
2 , ..., a

(1)
R

}))
.

If E1 = 1, then there exists a vector a such that a
(1)
i ∼ a for i = 1, 2, ..., R. In this case, we have

A =

R∑
r=1

a ◦ a(2)r ◦ ... ◦ a(m)r = a ◦

(
R∑
r=1

a(2)r ◦ ... ◦ a(m)r

)
.

Since A is semi-symmetric, then B :=
R∑
r=1

a
(2)
r ◦ ... ◦ a(m)r is a symmetric tensor. Note that the CP rank of B should be R, because

otherwise we have a contradiction to the fact that R is the minimal CP rank of A. Also, by [28, Theorem 3.8] and [28,

Theorem 4.2], since R ≤ m − 1, then there exists a symmetric CP-decomposition of B of rank R, then there exist vectors br ,

r ∈ {1, ..., R} such that

A =

R∑
r=1

a ◦ b◦m−1r

which proves the theorem in this case.

If E1 ≥ 2, then the proof is similar to the proof of previous theorem, part E2 ≥ 3, the only difference is, we just need to follow

it from s − 1 down to 2, since the rank is smaller in this theorem. Also, see the symmetric case in [28, Theorem 3.8]. �

Corollary 1 For a third-order n-dimensional semi-symmetric tensor with CP rank equal or less than three, semi-symmetric CP

rank is the same as CP rank.

Therefore, we could obtain a result which states that under certain conditions dependent on the order of tensor, the CP rank

and semi-symmetric rank are equal.

We next establish results analogous to that given for symmetric tensors in [9, 13]. This time, equality holds under some

assumptions on the tensor dimension sizes.

Lemma 5 Let {br |r = 1, 2, ..., R} be a linearly independent set. If tensor A ∈ Sm1 (F n) (m > 1) is defined as follows

A =

R∑
r=1

ar ◦ b◦m−1r

with ar 6= 0 for every r , then the semi-symmetric CP rank of A is R.

Proof. For m = 2, the result is obvious. Suppose the CP rank of A is s < R, then there exist cr , dr for r = 1, ..., s such that

A =

R∑
r=1

ar ◦ b◦m−1r =

s∑
r=1

cr ◦ d◦m−1r .

There exist functionals {φ1, ..., φR} such that φi(bj) = δi j . Let us choose an arbitrary scalar i from {1, 2, ..., R}. We know there

exist at least a j ∈ {1, ..., n} such that (ai)j 6= 0 (because otherwise we have ai ≡ 0), then

A(j, :, ..., :) =

R∑
r=1

(ar )jb
◦m−1
r =

s∑
r=1

(cr )jd
◦m−1
r .

Contracting the above equation by functional φi in the first m − 2 modes gives the following equation:

(ai)jbi =

s∑
r=1

(cr )jαrdr .

Since (ai)j 6= 0, this equation implies that bi ∈ span{d1, ..., ds}. Since i was chosen arbitrary, then span{b1, ..., bR} ⊆
span{d1, ..., ds}. Since s < R and due to linear independence of span{b1, ..., bR}, this is a contradiction. Therefore, the semi-

symmetric CP rank of A is R. �
We note that a similar result to Lemma 5 is mentioned in [17, Exercise 3.1.3.3]. Also, for m > 3, using Kruskal’s result [16],

we can see that the decomposition given in Lemma 5 is unique.

In the following, we use the term “generically”, a property holds generically if it holds everywhere but for a set of Lebesgue

measure zero [10]. Also, see [14], [9, Section 4.4 and Lemma 5.2] for more information about this lemma and the concept of

genericity.
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Lemma 6 Let A ∈ Sm1 (F n) and

A =

R∑
r=1

ar ◦ br ◦ ... ◦ br

be a semi-symmetric CP rank decomposition of A with R ≤ n. Then,

{br |r = 1, 2, ..., R}

is generically a linearly independent set.

Proof. The proof is similar to the that of [9, Lemma 5.2] given for symmetric tensors. We should just change the function

given in the proof of [9, Lemma 5.2] to the following function

EA : F n×R → Sm1 (F n)

[b1, ..., bR] 7−→
R∑
r=1

ar ◦ br ◦ ... ◦ br

where A = [a1, ..., aR] and obviously f is a polynomial map. The rest follows from the proof of [9, Lemma 5.2]. �

Theorem 3 Let A ∈ Sm1 (F n). If the semi-symmetric CP rank of A is equal to or less than n, then the CP rank is equal to the

CP semi-symmetric rank generically.

Proof. Suppose R and Ess are the CP rank and the CP semi-symmetric rank, respectively. We have,

R∑
r=1

c (1)r ◦ c (2)r ◦ ... ◦ c (m)r =

Ess∑
r=1

ar ◦ br ◦ ... ◦ br . (3)

From [28, Lemma 3.1], we know that
{
ar ◦ b◦(m−2)r |r = 1, 2, ..., Ess

}
is a linearly independent set. Therefore, there exist

functionals {φ1, ..., φEss } such that φi(aj ◦ b◦(m−2)j ) = δi j . Fix an i ∈ {1, 2, ..., Ess}. Contracting both sides of (3) by φi yields

R∑
r=1

γi jc
(m)
r = bi

where γi j = φi(c
(1)
j ◦ c

(2)
j ◦ ... ◦ c

(m−1)
j ). Since i was arbitrary, then for i ∈ {1, 2, ..., Ess}, bi ∈ span{c (m)1 , ..., c

(m)
R }. By Lemma 6,

{br |r = 1, 2, ..., Ess} is generically a linearly independent set. As

span{b1, ..., bEss } ⊆ span{c (m)1 , ..., c
(m)
R },

then Ess ≤ R. Obviously, we have also Ess ≥ R, therefore Ess = R. �

Corollary 2 For a third-order n-dimensional semi-symmetric tensor with CP rank less or equal than n, semi-symmetric CP rank

is the same as CP rank generically.

Remark 1 The results of this paper are stated for cubic tensors, for a non-cubic tensor, that is a tensor such as A ∈ F k×n×...×n
where k 6= n, if k > n then we can extend this tensor by adding zero elements to this tensor and make it a cubic tensor like

A′ ∈ F k×k×...×k , it can be easily seen that every decomposition of A can become a decomposition of A′ by adding the respective

zero elements to decompositions. So, the results of this paper are true for cubic A′ and therefore for A. If k < n, we can again

by adding zero elements create a cubic tensor in F n×n×...×n, the previous argument can be used to show that the results hold for

A′ and therefore A. These results are included as the following Corollary.

Corollary 3 Let A ∈ F k×n×...×n be an mth-order semi-symmetric tensor. Suppose A =
R∑
r=1

a
(1)
r ◦ a(2)r ◦ . . . ◦ a(m)r is the CP rank

decomposition of A.

i) If R ≤ m, then the rank CP and semi-symmetric rank of A are equal.

ii) If the semi-symmetric CP rank is less or equal to n, then the CP rank is equal to the CP semi-symmetric rank generically.
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4. Conclusions and Future Works

The connection between the CP rank and semi-symmetric rank (higher-order INDSCAL) is investigated in this paper. Under

some assumptions on the size (or order) of a tensor, the CP and semi-symmetric CP rank are proved to be equal.

In future work, the relationship between the decomposition of a tensor and the decomposition of its analogous semi-symmetric

tensor can be investigated. Since semi-symmetric tensors have a simpler structure and for every tensor there exists a semi-

symmetric tensor which inherits many of its properties (like eigenvalues) [18], establishing such a relationship can be especially

useful for better understanding the tensor decompositions.
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[2] A. Bernardi, A. Gimigliano, and M. Idà. Computing symmetric rank for symmetric tensors. J. Symb. Comput., 46(1):34–53,

2011.

[3] H. Bozorgmanesh and M. Hajarian. Convergence of a transition probability tensor of a higher-order Markov chain to the

stationary probability vector. Numer. Linear Algebra Appl., 23(6):972–988, 2016.

[4] H. Bozorgmanesh and M. Hajarian. Triangular decomposition of cp factors of a third-order tensor with application to

solving nonlinear systems of equations. J. Sci. Comput., 90(74), 2022.

[5] H. Bozorgmanesh, M. Hajarian, and A. T. Chronopoulos. Interval tensors and their application in solving multi-linear

systems of equations. Comput. Math. with Appl., 79(3):697–715, 2020.

[6] C. Bu, X. Zhang, J. Zhou, W. Wang, and Y. Wei. The inverse, rank and product of tensors. Linear Algebra Appl.,

446:269–280, 2014.

[7] A. Casarotti, A. Massarenti, and M. Mella. On Comon’s and Strassen’s conjectures. Mathematics, 6(11):217, 2018.

[8] J. Coloigner, A. Karfoul, L. Albera, and P. Comon. Line search and trust region strategies for canonical decomposition of

semi-nonnegative semi-symmetric 3rd order tensors. Linear Algebra Appl., 450:334–374, 2014.

[9] P. Comon, G. Golub, L.-H. Lim, and B. Mourrain. Symmetric tensors and symmetric tensor rank. SIAM J. Matrix Anal.

Appl., 30(3):1254–1279, 2008.

[10] L. De Lathauwer. A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization.

SIAM J. Matrix Anal. Appl., 28(3):642–666, 2006.

[11] L. De Lathauwer, B. De Moor, and J. Vandewalle. A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl.,

21(4):1253–1278, 2000.

[12] I. Domanov and L. D. Lathauwer. Generic uniqueness conditions for the canonical polyadic decomposition and INDSCAL.

SIAM J. Matrix Anal. Appl., 36(4):1567–1589, 2015.

[13] S. Friedland. Remarks on the symmetric rank of symmetric tensors. SIAM J. Matrix Anal. Appl., 37(1):320–337, 2016.

[14] F. Gesmundo, A. Oneto, and E. Ventura. Partially symmetric variants of comon’s problem via simultaneous rank. SIAM

J. Matrix Anal. Appl., 40(4):1453–1477, 2019.

[15] X. Gong, M. J. Mohlenkamp, and T. R. Young. The optimization landscape for fitting a rank-2 tensor with a rank-1 tensor.

SIAM J. Appl. Dyn. Syst., 17(2):1432–1477, 2018.

[16] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM Rev., 51(3):455–500, 2009.

[17] J. Landsberg. Tensors: Geometry and Applications. Graduate studies in mathematics. J. Am. Math. Soc., 2011.

[18] Q. Ni and L. Qi. A quadratically convergent algorithm for finding the largest eigenvalue of a nonnegative homogeneous

polynomial map. J. Glob. Optim., 61(4):627–641, 2015.

[19] L. Omberg, G. H. Golub, and O. Alter. A tensor higher-order singular value decomposition for integrative analysis of dna

microarray data from different studies. Proc. Natl. Acad. Sci. U.S.A., 104(47):18371–18376, 2007.

[20] L. Qi, H. Chen, and Y. Chen. Tensor Eigenvalues and Their Applications. Springer, Singapore, 2018.

[21] L. Qi and Z. Luo. Tensor analysis: Spectral theory and special tensors. SIAM, Philadelphia, 2017.

[22] Y. Qi, P. Comon, and L.-H. Lim. Semialgebraic geometry of nonnegative tensor rank. SIAM J. Matrix Anal. Appl.,

37(4):1556–1580, 2016.

46 Copyright c© 2022 Shahid Beheshti University. Comput. Math. Comput. Model. Appl. 2022, Vol. 1, Iss. 1, pp. 37–47



H. Bozorgmanesh and A.T. Chronopoulos Computational Mathematics and Computer Modeling with Applications

[23] A. Seigal. Ranks and symmetric ranks of cubic surfaces. J. Symb. Comput., 101:304–317, 2020.

[24] Y. Shitov. A counterexample to Comon’s conjecture. SIAM J. Appl. Algebra Geom., 2(3):428–443, 2018.

[25] J. Tendeiro, M. B. Dosse, and J. M. ten Berge. First and second-order derivatives for cp and indscal. Chemometr. Intell.

Lab. Syst., 106(1):27–36, 2011.

[26] J. Vanderstukken, A. Stegeman, and L. De Lathauwer. Systems of polynomial equations, higher-

order tensor decompositions and multidimensional harmonic retrieval: a unifying framework–part i:

The canonical polyadic decomposition. Part I: The canonical polyadic decomposition. Available as

ftp://ftp.esat.kuleuven.be/pub/stadius/nvervliet/vanderstukken2017systems1.pdf, 2017.

[27] L. Wang, L. Albera, A. Kachenoura, H. Shu, and L. Senhadji. Canonical polyadic decomposition of 3rd order semi-

nonnegative semi-symmetric tensors using LU and QR matrix factorizations. EURASIP J. Adv. Signal Process., pages

33–pages, 2014.

[28] X. Zhang, Z.-H. Huang, and L. Qi. Comon’s conjecture, rank decomposition, and symmetric rank decomposition of

symmetric tensors. SIAM J. Matrix Anal. Appl., 37(4):1719–1728, 2016.

Comput. Math. Comput. Model. Appl. 2022, Vol. 1, Iss. 1, pp. 37–47 Copyright c© 2022 Shahid Beheshti University. 47


	1  Introduction
	2 Preliminaries
	3 Rank decomposition and semi-symmetric rank decomposition
	4 Conclusions and Future Works

