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From symplectic eigenvalues of positive
definite matrices to their pseudo-orthogonal
eigenvalues

Kh.D. Ikramova and A.M. Nazarib

Williamson’s theorem states that every real symmetric positive definite matrix A of even order can be brought to diagonal

form via a symplectic T -congruence transformation. The diagonal entries of the resulting diagonal form are called the

symplectic eigenvalues of A. We point at an analog of this classical result related to Hermitian positive definite matrices,

*-congruences, and another class of transformation matrices, namely, pseudo-unitary matrices. This leads to the concept of

pseudo-unitary (or pseudo-orthogonal, in the real case) eigenvalues of positive definite matrices. Copyright c© 2022 Shahid

Beheshti University.
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1. Introduction

Transformation of a square matrix A of the type

A→ QTAQ,

where Q is a nonsingular matrix, is called a T -congruence transformation or just a T -congruence. If A is complex, then another

type of congruence transformations, called *-congruences, is possible:

A→ Q∗AQ.

Here, Q is again an arbitrary nonsingular matrix. If the transformation matrix Q is chosen in a special matrix class, then the

term congruence is accordingly specified. For instance, if Q is an orthogonal (unitary) matrix, then one speaks of an orthogonal

(unitary) congruence.

Let A be a real symmetric matrix. It is well known that A can be brought to diagonal form via an orthogonal congruence,

which, at the same time, is a similarity:

QTAQ = D.

The diagonal entries di i are eigenvalues of A.

If the order of A is an even integer, n = 2m, then the reduction of A to diagonal form is possible via transformations from

another class, namely, from the class of symplectic congruences. Recall that a matrix S of order n = 2m is said to be symplectic

if

ST JS = J,

where

J =

(
0 Im
−Im 0

)
.
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The assertion called Williamson’s theorem (see [1]) states that every real symmetric positive definite matrix of order n = 2m

can be brought to diagonal form via a symplectic congruence:

STAS = Λ. (1)

The diagonal matrix Λ is the direct sum

Λ = Dm ⊕Dm,

and the diagonal entries of the m ×m matrix Dm are called the symplectic eigenvalues of A. In general, they are in no way

related to the conventional eigenvalues of this matrix; the only common property of the numbers in the two sets is positivity.

Our goal in this paper is to indicate that there are other groups of congruence transformations that also can be used for

diagonalizing positive definite matrices.

2. Main result

We first recall a well known theorem on pairs of Hermitian matrices (see [2, Theorem 7.6.4]).

Theorem 1 Let A and B be Hermitian n × n matrices, and let A be positive definite. Then there is a nonsingular matrix P such

that P ∗AP = In and P ∗BP = M, where M is a real diagonal matrix. The matrices B and M have the same inertias, that is, the

same numbers of positive and negative eigenvalues. The diagonal entries of M are the eigenvalues of the matrix A−1B.

We apply this theorem to the case where

B = Ip ⊕ (−Iq) ≡ Ip,q, p, q > 0, p + q = n.

The matrix P in the relations

P ∗AP = In, P ∗BP = M (2)

can be chosen so that the first p diagonal entries of M are positive.

We write M in the form

M = diag (d1, . . . , dp, dp+1, . . . , dn)

and define the matrix

W = diag
(√

d1, . . . ,
√
dp,
√
−dp+1, . . . ,

√
−dn

)
.

Now, we perform the simultaneous congruence transformation

W−∗InW
−1 = W−2, W−∗MW−1 = Ip,q = B.

Combining the relations (2) and W−∗MW−1 = B, we obtain

(W−∗P ∗)B(PW−1) = B.

Setting

R = PW−1,

we have

R∗Ip,qR = Ip,q. (3)

Every matrix R satisfying relation (3) is said to be pseudo-unitary. If R is real, then it is said to be pseudo-orthogonal.

We can summarize the above considerations in the following theorem.

Theorem 2 Every Hermitian positive definite matrix A can be brought to diagonal form via a pseudo-unitary *-congruence. If A

is real, then it can be brought to diagonal form via a pseudo-orthogonal congruence. In both cases, the diagonal entries of the

resulting diagonal form F are the moduli of eigenvalues of the matrix Ip,qA.

In what follows, we call the diagonal entries of F the {p, q}-pseudo-unitary (or pseudo-orthogonal) eigenvalues of the positive

definite matrix A.
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3. Pseudo-orthogonal versus symplectic

There is an interesting relationship between the conventional and symplectic eigenvalues of A. We first recall the Schur inequality

for the eigenvalues λi(G) of a complex n × n matrix G and the Frobenius norm of this matrix:

n∑
i=1

|λi(G)|2 ≤ ‖G‖2F . (4)

The equality in (4) is attained if and only if G is a normal matrix.

Denote by σ the value

σ =

n∑
i=1

|λi(A)|2.

If A is a real symmetric matrix, then

σ = ‖A‖2F .

Let d1, . . . , dm be the symplectic eigenvalues of A. These numbers are the moduli of eigenvalues of JA, which follows from (1).

Consequently, the Schur inequality yields the estimate

σs
def
≡ 2

m∑
i=1

d2i ≤ ‖JA‖2F . (5)

Since

‖JA‖F = ‖A‖F ,

we ultimately obtain the inequality

σs ≤ σ.

Denote by e1, . . . , en the pseudo-orthogonal eigenvalues of the positive definite matrix A. By analogy with (5), define the

value

σp,q
def
≡

n∑
i=1

e2i .

By replacing J in the above calculations by the matrix Ip,q, we get the inequality

σp,q ≤ σ.

4. Numerical results

In this section, we find the collective characteristics σ, σs , and σp,q of the conventional, symplectic, and pseudo-orthogonal

eigenvalues for four types of symmetric test matrices. We restrict ourselves to the matrix order n = 10. However, since the

matrix of the fourth type (the Hilbert matrix) has a cluster of very small eigenvalues, we choose its order even smaller (n = 6).

Type 1. All the diagonal entries of A are equal to a positive number a, while all the off-diagonal entries are equal to a real

number b. The eigenvalues of such a matrix A are as follows: 1) the simple eigenvalue a + (n − 1)b; 2) the eigenvalue a − b of

multiplicity n − 1. Thus, A is certainly positive definite if a > b > 0.

We set a = 3, b = 1. Then σ ≈ 180.000 and σs ≈ 80.000. Table 1 shows σp,q as a function of the positive inertia index p.

Table 1

p 9 8 7 6 5 4 3 2 1

σp,q 144 116 96 84 80 84 96 116 144

It comes into notice that σp,q is symmetric with respect to the central value p = 5. This is easily explained by the features of

matrices of this type; namely, they are not changed by any symmetric permutation of rows and columns. As a consequence, the

matrix Iq,pA can be obtained from −Ip,qA by a symmetric permutation of rows and columns. Neither such a permutation nor the

sign reversion can change the moduli of eigenvalues.

Type 2. For all i and j , set ai j = min(i , j). It is well known that such a matrix A is positive definite for all n. For n = 10, we

have σ = 2035 and σs = 410. Table 2 exhibits σp,q as a function of p.

The function σp,q has an evident minimum at p = 7. The entries in the last three rows of A are the largest ones in this matrix.

Here, they reverse their signs, which results in the emergence of three negative eigenvalues of the matrix I7,3A. As the negative

inertia index q increases, σp,q grows monotonically. The number of negative eigenvalues of the matrix Ip,qA increases along with
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Table 2

p 9 8 7 6 5 4 3 2 1

σp,q 895 403 355 579 935 1315 1643 1875 1999

q. When q = 9, the matrix I1,9A can be regarded as a rank-one perturbation of −A; moreover, it is the entries of the upper row

that are perturbed, and they have minimal sizes in the matrix. It’s no wonder that σ1,9 is the closest value to σ.

Type 3. A is the tridiagonal Toeplitz matrix with the diagonal entry a ≥ 2 and the number −1 on the two neighboring

diagonals. The eigenvalues of this matrix are well known and positive if a = 2. If a > 2, then the spectrum shifts to the right by

a − 2.

For n = 10, we have σ = 58 and σs = 56. Table 3 demonstrates σp,q as a function of p.

Table 3

p 9 8 7 6 5 4 3 2 1

σp,q ≈ 54 ≈ 54 ≈ 54 ≈ 54 ≈ 54 ≈ 54 ≈ 54 ≈ 54 ≈ 54

The fact that σp,q = σq,p can be explained, similarly to matrices of type 1, by the persymmetry of A, that is, by its symmetry

with respect to the antidiagonal. It is however surprising that σp,q remains constant (within the accuracy of calculations) for

all p, although the spectra of Ip1,q1A and Ip2,q2A are entirely different when p1 6= q2. For now, we have no explanation to this

permanence.

Type 4. For the Hilbert matrix of order n = 6, we have σ ≈ 2.68 and σs ≈ 0.33. Table 4 shows σp,q as a function of p.

Here, σp,q monotonically decreases along with p.

Table 4

p 5 4 3 2 1

σp,q ≈ 2.34 ≈ 1.47 ≈ 1.19 ≈ 0.79 ≈ 0.12

5. Conclusion

In this paper, we have introduced the new notion of the pseudo-orthogonal eigenvalues of a positive definite matrix. Certain

numerical results were given. Especially interesting are the results obtained for the matrix of the third type. The invariance of

the Frobenius measure σ with respect to the parameters p and q remains an unexplained phenomenon. We hope to find an

explanation in our future work.
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